
EOModeler User Guide
(Legacy)

2006-05-23

Apple Inc.
© 2002, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, and
WebObjects are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.

Enterprise Objects is a registered trademark
of NeXT Software, Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of
Heidelberger Druckmaschinen AG,
available from Linotype Library GmbH.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to EOModeler User Guide 11

About This Book 11
Organization of This Document 12
See Also 12

Chapter 1 Data Modeling and EOModeler 13

Why Model Your Data? 13
When to Model Data 14
EOModeler Features 14
Entity-Relationship Modeling Fundamentals 15

Entities and Attributes 15
Naming Conventions 16
Data Types 16
Relationships 16
ER Modeling in Enterprise Objects 17

Creating a Model From an Existing Data Source 17
Selecting an Adaptor 18
Choosing What to Include 21
Choosing the Tables to Include 23
Specifying Primary Keys 23
Specifying Referential Integrity Rules 23
Choosing Stored Procedures 24
Save the Model 24

What a New Model Includes 25
Checking for Consistency 26

Chapter 2 Using EOModeler 27

Editing Views 27
The Tree View 28
Table Mode 29
Diagram View 31
Browser Mode 32

3
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 3 Working With Attributes 35

Attribute Characteristics 35
More About Attribute Characteristics 38

Allows Null 38
Class Property 38
Client-Side Class Property 38
Definition (Derived Attributes) 39
Locking 40
Primary Key 40
Read Format and Write Format 41
Value Type 42

Prototype Attributes 43
Creating Prototype Attributes 43
Assigning a Prototype to an Attribute 44

Flattened Attributes 44
When Should You Flatten Attributes? 44
Flattening an Attribute 45

Chapter 4 Working With Relationships 47

About Relationships 47
Directionality 48
Cardinality 48
Relationship Keys 48
Reflexive Relationships 49
Owns Destination and Propagate Primary Key 50

Creating Relationships 50
Forming Relationships in the Diagram View 50
Forming Relationships in the Inspector 51
Forming Relationships Across Models and Data Sources 53

Tips for Specifying Relationships 53
Adding Referential Integrity Rules 54

Optionality 54
Delete Rule 54

Flattened Relationships 55
When Should You Flatten Relationships? 55
Flattening a Relationship 55

Modeling Many-to-Many Relationships 57

Chapter 5 Working With Entities 59

Entity Characteristics 59
Advanced Entity Inspector 60
Shared Objects Inspector 62
Stored Procedure Inspector 64

4
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Chapter 6 Modeling Inheritance 67

Deciding to Use Inheritance 67
Vertical Mapping 69

Implementing Vertical Mapping in a Model 70
Advantages of Vertical Mapping 74
Disadvantages of Vertical Mapping 74

Horizontal Mapping 74
Implementing Horizontal Mapping in a Model 75
Advantages of Horizontal Mapping 76
Disadvantages of Horizontal Mapping 76

Single-Table Mapping 76
Implementing Single-Table Mapping in a Model 77
Implementing a Restricting Qualifier 78
Advantages of Single-Table Mapping 79
Disadvantages of Single-Table Mapping 79

Chapter 7 Working With Fetch Specifications 81

Creating a Fetch Specification 81
Building a Qualifier 82
Creating Compound Qualifiers 83
Using Qualifier Variables 84

Assigning a Sort Ordering 85
Prefetching 86
Configuring Raw Row Fetching 86
Other Fetch Specification Options 87
Using Named Fetch Specifications 88

Document Revision History 91

Glossary 93

5
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

6
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Figures, Tables, and Listings

Chapter 1 Data Modeling and EOModeler 13

Figure 1-1 Choose an adaptor 19
Figure 1-2 JDBC Connection window with OpenBase connection information 20
Figure 1-3 JDBC Connection window with Oracle connection information 20
Figure 1-4 JNDI Connection window 21
Figure 1-5 Choose what to include 21
Figure 1-6 Select tables to include in model 23
Figure 1-7 Specify referential integrity rules for a relationship 24
Figure 1-8 Consistency-checking options 26
Table 1-1 Object-relational mapping 17
Table 1-2 Table name to entity name mapping 25
Table 1-3 Column name to attribute name mapping 25

Chapter 2 Using EOModeler 27

Figure 2-1 An attribute’s inspector panes 28
Figure 2-2 Tree view with an expanded entity 29
Figure 2-3 Table mode with the entire model selected 30
Figure 2-4 A model’s components in table mode 30
Figure 2-5 An entity’s attributes and relationships 31
Figure 2-6 Diagram view 32
Figure 2-7 Browser mode 33

Chapter 3 Working With Attributes 35

Figure 3-1 An entity’s attributes 35
Figure 3-2 Derived attribute syntax 39
Figure 3-3 A prototype entity 43
Figure 3-4 An attribute using a prototype 44
Figure 3-5 An attribute using part of a prototype 44
Figure 3-6 Selecting the relationship in which the attribute to flatten exists 45
Figure 3-7 An attribute flattened 46
Figure 3-8 A flattened attribute in the Attribute Inspector 46
Table 3-1 Attribute characteristic definitions 36

7
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 4 Working With Relationships 47

Figure 4-1 Foreign key for PersonPhoto in Person table 48
Figure 4-2 PersonPhoto primary key in PersonPhoto table 49
Figure 4-3 Reflexive relationship table 50
Figure 4-4 Control-drag from source key to destination key to form a relationship 51
Figure 4-5 Control-dragging also creates an inverse relationship 51
Figure 4-6 Using the Relationship Inspector to build a relationship 52
Figure 4-7 Multiple models to choose from 53
Figure 4-8 Select the relationship that contains the relationship to flatten 56
Figure 4-9 Select the relationship to flatten 56
Figure 4-10 A flattened relationship displayed in browser mode 56
Figure 4-11 Two entities before joining in a many-to-many relationship 57
Figure 4-12 Two entities after being joined in a many-to-many relationship 58

Chapter 5 Working With Entities 59

Figure 5-1 The Administrator entity selected in the tree view 59
Figure 5-2 The Advanced Entity Inspector 61
Figure 5-3 Shared Objects Inspector configured to perform an unqualified fetch 63
Figure 5-4 Shared Objects Inspector configured to shared objects from a qualified fetch

64
Figure 5-5 Stored Procedure Inspector 65
Figure 5-6 Map stored procedure in model to procedure in data source 65
Figure 5-7 Stored procedure arguments 66
Table 5-1 Entity characteristics 60

Chapter 6 Modeling Inheritance 67

Figure 6-1 A simple object hierarchy 68
Figure 6-2 Vertical mapping 70
Figure 6-3 Inherited attributes appear in italics 71
Figure 6-4 Mark parent entities as abstract if they won’t ever be instantiated 72
Figure 6-5 To-one relationships to parent entity shown in inspector 73
Figure 6-6 Flattened attributes in table view 73
Figure 6-7 Vertical inheritance hierarchy in diagram view 74
Figure 6-8 Horizontal inheritance mapping 75
Figure 6-9 Single-table inheritance mapping 77
Figure 6-10 Assign a restricting qualifier 78
Listing 6-1 Set type in awakeFromInsertion 79

Chapter 7 Working With Fetch Specifications 81

Figure 7-1 A sample fetch specification 82
Figure 7-2 Static qualifier 83

8
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Figure 7-3 A compound qualifier 84
Figure 7-4 Fetch specification bindings in WebObjects Builder 85
Figure 7-5 Sort ordering 85
Figure 7-6 Configure prefetching 86
Table 7-1 Bindings dictionary 88
Listing 7-1 Get a fetch specification programmatically 88
Listing 7-2 Bind qualifier variables 88

9
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

10
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Important: The information in this document is obsolete and should not be used for new development.

Note: This document was previously titled WebObjects EOModeler User Guide.

The Enterprise Object technology brings the benefits of object-oriented programming to database
application development. You can use Enterprise Objects to build feature-rich database applications
that encapsulate your business logic yet are independent of any particular data source.

One of the most significant problems developers face when using object-oriented programming
languages with relational databases is the difficultly of matching relational database tables with the
flexibility afforded by objects.

The Enterprise Object technology solves this problem by providing tools for defining an object model
and mapping it to a data model. This allows you to create objects that encapsulate both the data and
the methods for operating on that data, while taking advantage of the data-access services provided
by Enterprise Objects.

This book teaches you how to use EOModeler to build the data models you need to use Enterprise
Objects. With EOModeler, you can build data models based on existing data sources or you can build
data models from scratch, which you then use to create data structures (tables, columns, joins) in a
data source.

About This Book

This book is an in-depth guide on how to use EOModeler. It does not provide an introduction to the
Enterprise Object technology or to WebObjects. Instead, it is meant as supplement to the other
introductory WebObjects documentation and also as a general reference guide to EOModeler.

Some features of EOModeler, such as schema synchronization, SQL generation, and Java class file
generation are not discussed in this book. These features are best understood in the context of a specific
application and so are discussed in the Inside WebObjects series books Web Applications and Java
Client Desktop Applications.

About This Book 11
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to EOModeler User Guide

This book assumes some familiarity with relational databases and with Enterprise Objects. If you’re
new to WebObjects and Enterprise Objects, it is recommended that you start with one of the
tutorial-based books, either Web Applications or Java Client Desktop Applications depending on the kind
of application development you are doing. These books provide conceptual introductions to Enterprise
Objects and provide contexts in which to best learn about the technology.

Then, after you’ve read through the introductory material, you’ll probably have questions about
advanced data modeling techniques or how to use the advanced features of EOModeler. At that point,
you are ready for the information in this book.

Organization of This Document

The book includes these chapters:

 ■ “Data Modeling and EOModeler” (page 13) provides an introduction to data modeling concepts
and introduces the data modeling tool provided by WebObjects, called EOModeler.

 ■ “Using EOModeler” (page 27) introduces the major user interface elements of EOModeler and
teaches you how to use the application.

 ■ “Working With Attributes” (page 35) teaches you how to work with entity attributes in
EOModeler. It describes how to configure attribute characteristics, how to use prototype attributes,
and how to flatten attributes.

 ■ “Working With Relationships” (page 47) provides an introduction to relationships between
entities. It teaches you how to add and configure relationships in EOModeler, how to specify
referential integrity rules in relationships, how to flatten relationships, and how to configure
many-to-many relationships.

 ■ “Working With Entities” (page 59) teaches you how to work with entities in EOModeler. It
describes how to configure entity characteristics in EOModeler, how to configure entities for use
in a shared editing context, and how to work with stored procedures in EOModeler.

 ■ “Modeling Inheritance” (page 67) introduces entity inheritance in Enterprise Objects. It describes
the three types of entity inheritance and how to model each type using EOModeler.

 ■ “Working With Fetch Specifications” (page 81) describes how to configure fetch specifications
in EOModeler and how to use these fetch specifications programmatically.

See Also

You can find further documentation for WebObjects and Enterprise Objects in three places:

 ■ Project Builder’s Developer Help Center, accessible through the Help menu

 ■ Apple’s WebObjects documentation website: http://developer.apple.com/documentation

 ■ the WebObjects CD-ROM, which contains the WebObjects API reference, various documents in
HTML and PDF, examples, what’s new, and legacy documentation

12 Organization of This Document
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to EOModeler User Guide

http://developer.apple.com/documentation

This chapter introduces the concept of data modeling. It also introduces the WebObjects data modeling
tool, called EOModeler. It then leads you through the process of building a simple model. It is divided
into the following sections:

 ■ “Why Model Your Data?” (page 13) addresses that question.

 ■ “When to Model Data” (page 14) suggests where in the development cycle data modeling should
occur.

 ■ “EOModeler Features” (page 14) discusses the tool WebObjects provides to model data.

 ■ “Entity-Relationship Modeling Fundamentals” (page 15) introduces some of the main concepts
of this data modeling paradigm.

 ■ “Creating a Model From an Existing Data Source” (page 17) leads you through the process of
creating a simple model.

 ■ “What a New Model Includes” (page 25) describes what you get from a new model.

 ■ “Checking for Consistency” (page 26) discusses EOModeler’s consistency-checking feature.

Why Model Your Data?

While it may seem obvious, data modeling is perhaps the most important phase of WebObjects
application development. Data models form the foundation of your business logic and business logic
forms the core of your application. Good business logic is essential to building effective applications,
so it follows that good data models are essential to the success of the applications you build. Most
importantly, data modeling plays a crucial role in object-relational mapping, the process in which
database records are transposed into Java objects.

Using data models to develop data-driven applications provides you a unique advantage: applications
are isolated from the idiosyncrasies of the data sources they access. This separation of an application’s
business logic from database logic allows you to change the database an application accesses without
needing to change the application.

Also, WebObjects provides a rapid development environment that enables the creation of full-featured
Web and desktop applications based on data models. So if you build well-designed data models,
WebObjects gives you usable applications for free without any code.

Why Model Your Data? 13
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

When to Model Data

Whenever possible, data modeling should occur in the earliest phases of application design and
development. In data-driven applications, data modeling almost always influences an application’s
goals. That is, you cannot define an application’s goals outside of the context of the application’s data
models.

Data models in Enterprise Objects reflect the earliest decisions about what data users see and how
they are allowed to interact with data. This is because an important part of data modeling is deciding
which entities and attributes are visible to clients and editable by clients. So by including data modeling
as an early part of the design process, you can simplify future implementation details.

This doesn’t imply, however, that you need to lock down a model before you begin other phases of
application development. Although it’s easier to start with a model that is fairly complete, you can
revise models after you’ve started other phases of application development.

EOModeler Features

WebObjects provides you with a great tool for object-relational mapping called EOModeler. It allows
you to

 ■ build data models either from scratch or by analyzing preexisting data sources using reverse
engineering

 ■ add and customize entities (tables) and attributes (columns)

 ■ form relationships between entities

 ■ form relationships across multiple models

 ■ generate SQL from a model to create or update a data-source schema based on the model

 ■ generate Java classes from a model in which you can add custom business logic

 ■ use stored procedures within data models

 ■ graphically build fetch specifications for retrieving data

 ■ flatten attributes and relationships

 ■ define derived attributes

 ■ build database queries in raw SQL

 ■ synchronize changes made in the data source schema or in the data model using schema
synchronization

How you use EOModeler greatly depends on the control you have over an application’s data sources.
For instance, if you are not allowed to define new database tables or edit database columns, you have
less control over modeling the data; instead your responsibility is to define parameters for
object-relational mapping.

You’ll create better models if you’re empowered to change the database schema, but you can still
create effective models if you can’t.

14 When to Model Data
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

The most important thing EOModeler does is to provide a foundation with which to define the
mapping between data source schemas and Java objects. EOModeler produces many things, the most
important being EOModel files that provide the concrete mapping definition. The industry-standard
term for the mapping between data-source schemas and objects is Entity-Relationship modeling.

Entity-Relationship Modeling Fundamentals

A data source stores data in the structures it defines: A relational database uses tables, an
object-oriented database uses objects, a file system uses files, and so on. Entity-Relationship modeling
provides terminology and methodology to describe how a data source’s data structures can be mapped
to Java objects or other multidimensional data structures. Enterprise Objects uses a modified version
of Entity-Relationship modeling.

When working with relational-database systems, you can use EOModeler to define the mapping
between relational-database data structures and Java objects. The product of EOModeler, a model
file, describes the database’s data structures in terms that the Enterprise Object technology can
understand and work with.

In an Entity-Relationship model, distinguishable things are known as entities, each entity is defined
by its component attributes, and the affiliations, or relationships between entities, are identified
(together, attributes and relationships are known as properties). From these three simple modeling
objects—entities, attributes, and relationships—arbitrarily complex systems can be modeled.

Entities and Attributes

Entities and attributes represent structures that contain data. In a relational database data model,
entities represent tables and an entity’s attributes represent columns.

Each row in the table can be thought of as an instance of an entity. So, a customer record is called an
instance of the Customer entity. Each instance of an entity typically maps to one object, but more
complex mappings are possible.

Contained within an entity is a list of attributes of the thing that’s being modeled. The Customer
entity could contain attributes such as a customer’s first name, last name, phone number, and so on.

In traditional Entity-Relationship mapping, each entity represents all or part of one database table.
However, Enterprise Objects allows you to go beyond this by adding attributes to an entity that
actually reflect data in other related tables (this type of attribute is known as a flattened attribute).
So, in Enterprise Objects, an entity can map to one or more database tables.

Entities can also have derived attributes, which do not directly correspond to any of the columns in
the database table to which the entity maps. These attributes are usually computed from one or more
attributes in the entity. For example, a derived attribute could represent the total amount of money
spent by a customer by adding the amounts of all a customer’s purchases together.

Entity-Relationship Modeling Fundamentals 15
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Naming Conventions

Entities and attributes in data models derive their names based on the database elements they represent.
A CUSTOMER table in a database, for example, would likely map to an entity named “Customer,”
though this is not strictly required. In your application, you refer to the CUSTOMER table not by its
database name but by using its entity name, Customer.

This allows you to build data models that are largely independent of any particular data source.
Different data sources enforce different naming conventions for their data structures, so providing a
mapping between those names allows you to build reusable data models that can be used with
different data sources.

End users don’t care if the Customer entity maps to a table named CUSTOMER or CUST or
_CUSTOMER, so the mapping also helps make the earliest decisions about how data structures appear
in the end-user application.

Data Types

Every database column is assigned a data type such as int, varchar, float, or blob. These data types
map to primitive Java types such as int and float but also to Java objects such as java.lang.String
and java.lang.Object. The data model defines the data-type mapping between columns and
attributes just as it defines the naming mapping between them.

When data is fetched from a data source into an enterprise object, the value of each attribute is
converted from its external data type into a Java-specific data type. Likewise, when the data in an
enterprise object is pushed back to a data source, each attribute is converted from its Java data type
to the data type specified in the model.

Relationships

In the relational-database paradigm, a relationship expresses the affiliation between two tables in the
data source. Relationships allow one table to access related information in another table. In more
complex data modeling, relationships can express the affinity between multiple tables.

At the data-source level, the two tables in a relationship are linked together using primary and foreign
keys. How the table pair is related (that is, what kind of relationship is expressed) depends on the
configuration of primary and foreign keys in each table.

At the Enterprise Objects level, relationships are mapped to a particular kind of object that includes
not only information about the tables involved in a particular relationship but also the rules of the
relationship between the two tables.

Relationships are a complex concept in the Entity-Relationship model. The chapter “Working With
Relationships” (page 47) provides a more thorough introduction to the concept of relationships and
also introduces the additional features you get when using relationships with Enterprise Objects.

16 Entity-Relationship Modeling Fundamentals
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

ER Modeling in Enterprise Objects

In Enterprise Objects, data models describe the data source–to–enterprise object mapping by using
these objects:

 ■ com.webobjects.eoaccess.EOModel

 ■ com.webobjects.eoaccess.EOEntity

 ■ com.webobjects.eoaccess.EOAttribute

 ■ com.webobjects.eoaccess.EORelationship

The following table describes the object-relational mapping provided by Enterprise Object models.
The column titled “Database/directory element” lists elements as they are named in relational
databases and then elements as they are named in LDAP directories, if applicable.

Table 1-1 Object-relational mapping

Object mappingModel objectDatabase/directory element

Enterprise object modelEOModelSchema

Enterprise object classEOEntityTable/object class

Enterprise object instanceEOEnterpriseObjectRow/entry

Enterprise object instance variableEOAttributeColumn/attribute

Reference to another enterprise objectEORelationshipReferential constraint/foreign key

While the modeling classes correspond to elements in a data source, a model represents a level of
abstraction above the data source. Consequently, mapping between modeling classes and database
components doesn’t have to be one-to-one. So, for example, while an EOEntity object described in a
model corresponds to a single database table, it can contain references to multiple tables. In that sense,
a model is more analogous to a database view.

Similarly, an EOAttribute can either correspond directly to a column in the root entity or it can be
derived or flattened. A derived attribute typically has no corresponding database column while a
flattened attribute is added to one entity from another entity.

Creating a Model From an Existing Data Source

Although models can be programmatically generated at runtime, you typically create models using
EOModeler and then add them to your project as model files or as part of a framework your project
includes.

This section describes how to create a new model from an existing data source. It is organized in the
following sections:

 ■ “Selecting an Adaptor” (page 18)

Creating a Model From an Existing Data Source 17
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

 ■ “Choosing What to Include” (page 21)

 ■ “Choosing the Tables to Include” (page 23)

EOModeler is installed in /Developer/Applications.

To create a new model, choose New from the Model menu. EOModeler starts the New Model Wizard,
which helps you configure the new model.

Selecting an Adaptor

An adaptor is an object that connects your application to a particular data source. Since data sources
use different connection protocols (JDBC, JNDI, ERP, and so forth), you need a specialized adaptor
for each type of data source you use. Also, since vendors build different features into their data
sources, you also need an adaptor plug-in for each data source you use.

In WebObjects 5.2, adaptors are provided for JDBC and JNDI connectivity and adaptor plug-ins are
provided for the following data sources:

 ■ Oracle (JDBC)

 ■ Microsoft SQL Server 2000 (JDBC)

 ■ MySQL (JDBC)

 ■ OpenBase (JDBC)

 ■ Sybase (JDBC)

 ■ OpenLDAP (JNDI)

 ■ iPlanet (JNDI)

Refer to the document Post Installation Guide for exact specifications on which data sources are qualified
for WebObjects.

The Enterprise Objects adaptor architecture is modular so you can write adaptor plug-ins for other
types of data sources and for other data-source vendors (see Apple Technical Note TN2027). However,
this is a very advanced feature so it’s best to use a data source that’s officially supported by WebObjects,
such as those listed above.

WebObjects provides two adaptor types out of the box: JDBC and JNDI. The first pane that appears
in the New Model Wizard allows you to choose the adaptor you want to use in the model, as shown
in Figure 1-1.

18 Creating a Model From an Existing Data Source
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Figure 1-1 Choose an adaptor

After you select an adaptor, EOModeler displays a window prompting you to enter login and other
information to connect to the data source. Figure 1-2 shows the JDBC Connection window that appears
if you select the JDBC adaptor. Figure 1-4 shows the JNDI Connection window that appears if you
select the JNDI adaptor. For this example, use the JDBC adaptor.

Note: Although this example assumes that you choose the JDBC adaptor, there is valuable information
throughout regarding the JNDI adaptor.

If necessary, supply the correct login information for the data source. You must also supply the URL
of the data source. Depending on the data source and adaptor you want to use, you may also need
to supply information in the Driver and Plugin fields.

Note: If you are connecting to a database on your local machine and you are not connected to a
network, you may need to use 127.0.0.1 as the address rather than localhost.

For this example, use the WORealEstate database that is installed with WebObjects. The example
databases uses OpenBase, so the URL you enter in the JDBC Connection window is specific to that
particular database. When you create models from other vendor’s databases, you may need to use a
different URL format. Figure 1-3 (page 20) shows the URL format Oracle uses.

Creating a Model From an Existing Data Source 19
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Figure 1-2 JDBC Connection window with OpenBase connection information

adaptor type:adaptor plug-in://
database host/database name

Not necessary for the
adaptor plug-ins that ship
with WebObjects

Figure 1-3 JDBC Connection window with Oracle connection information

20 Creating a Model From an Existing Data Source
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Figure 1-4 JNDI Connection window

Choosing What to Include

After you log in to the data source, the wizard asks you what you want to include in the model, as
shown in Figure 1-5. The options available here largely depend on how complete the schema
information in the data store is. For example, the wizard includes relationships in your model only
if the server’s schema information specifies foreign key constraints.

Figure 1-5 Choose what to include

Using the options in this page, you tell EOModeler that you want to supplement the model with
additional information. Keep in mind that the wizard does not modify the data source. Also note that
you can do everything the wizard does to a model manually after the initial model is created—but
using the wizard saves you time.

Creating a Model From an Existing Data Source 21
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Note: If you use the JNDI adaptor, always deselect these four options as they don’t apply to those
types of data sources.

Assign Primary Keys to All Entities

Enterprise Objects uses primary keys to create unique identifiers
(com.webobjects.eocontrol.EOGlobalID objects) for enterprise objects and also to map enterprise
objects to the appropriate database rows. Therefore, every entity in a model must be assigned a
primary key.

If you select this option in the New Model Wizard, primary keys are assigned to entities in the model
if the wizard finds primary key constraints in the data store’s schema information. If the data store’s
schema does not include primary key information, the wizard first asks you to select the primary key
for each entity before it assigns it to an entity in the model.

Ask About Relationships

If a data store’s schema includes foreign key constraints, the wizard creates corresponding relationships
in the model. However, foreign key definitions in a schema may not provide enough information for
the wizard to set all of a relationship’s options (such as delete rule and optionality). Selecting this
option causes the wizard to prompt you to provide the additional information it needs to configure
the relationships, if necessary.

Ask About Stored Procedures

Selecting this option causes the wizard to read stored procedures from the data source’s schema
information, display them, and allows you to choose which to include in the model. See “Stored
Procedure Inspector” (page 64) for more information.

Use Custom Enterprise Objects

When deciding what class to map a table to, the wizard offers two choices: EOGenericRecord or a
custom class (a subclass of EOGenericRecord or EOCustomObject). EOGenericRecord is a class that
implements the com.webobjects.eocontrol.EOEnterpriseObject interface. Its instances store
key-value pairs that correspond to an entity’s properties and the data associated with each property.

If you do not select this option in the New Model Wizard, the wizard maps all your database tables
to EOGenericRecord. If you do select this option, the wizard maps all your database tables to custom
classes that you write. The wizard assumes that each entity is to be represented by a custom class
with the same name. For example, a table named LISTING corresponds to an entity named Listing,
which corresponds to an EOGenericRecord or EOCustomObject subclass named Listing.java.

If you choose to use EOGenericRecord rather than custom classes, you do not generate Java files for
the entities in your model. This means that you have less opportunity to add business logic to perform
validation, insert initial values, or otherwise manipulate enterprise objects programmatically. For
some entities, this may be what you want. A common design pattern is to use custom classes only
for entities in which you need to implement custom business logic and to use EOGenericRecord for
other entities.

22 Creating a Model From an Existing Data Source
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Choosing the Tables to Include

In this section of the wizard, you are prompted to choose the tables to include in the model. By default
all tables are selected, as shown in Figure 1-6, but you can select only certain tables if you want. The
wizard creates entities only for the selected tables. Keep in mind that if you want a join to be reflected
in the model as a relationship, you must select the source table and the destination table of the join.

Figure 1-6 Select tables to include in model

Specifying Primary Keys

If you are using a data source that stores primary key information in its schema information, the
wizard skips this step. It has already read primary key information from the schema and assigned
primary keys to entities in the model.

However, if primary key information isn’t specified in the data source’s schema or if the adaptor can’t
read it, the wizard asks you to specify a primary key for each entity.

If an entity’s primary key is compound; that is, if it’s composed of more than one attribute,
Command-click to select multiple attributes to use as a compound primary key. You usually use a
compound primary key when any single attribute isn’t sufficient to identify a row uniquely. That is,
you should need to use a compound primary key only if no single attribute can uniquely identify a
row.

Specifying Referential Integrity Rules

If foreign key constraints aren’t specified in the data source’s schema information or if the adaptor
can’t read that information, the wizard doesn’t create relationships in the model so it skips this step.
If this is the case, you can add relationships later as described in “Working With Relationships” (page
47).

However, if you’re using a data source that stores foreign key constraints in its schema information,
the wizard reads them and creates corresponding relationships in the model.

Creating a Model From an Existing Data Source 23
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

At this point, if you specified that the wizard ask about relationships, it now asks you to provide
additional information about the relationships so it can further configure them. Figure 1-7 shows the
wizard asking about the customers relationship in the Agent entity.

Figure 1-7 Specify referential integrity rules for a relationship

Owns Destination

This option lets you specify whether the relationship’s source owns its destination objects. If a source
object owns its destination object, for example, as when an Agent object owns its Customer objects,
then when something happens so that a destination object (Customer) is removed from the relationship,
it is also removed from the data source. Ownership implies that an owned object cannot exist without
its owner.

Delete Rule

The options in this section of the window specify what to do when the source object of a relationship
is deleted. There are four options, which are described in “Delete Rule” (page 54).

Choosing Stored Procedures

If you asked the wizard to include stored procedures in your model, in this window it asks you to
specify which stored procedures to include. By default, all stored procedures are selected. If you later
decide that you want to include a stored procedure in the model that you didn’t select here, you can
always add it later. See “Stored Procedure Inspector” (page 64) for more information.

Save the Model

After using the wizard to create the initial model, save the model. If there are any warnings indicating
problems with the model, go ahead and continue with the save, then go back and fix the model. You
can check for problems at any time by choosing Check Consistency from the File menu.

24 Creating a Model From an Existing Data Source
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

What a New Model Includes

When you create a new model, the information it includes depends on how complete the underlying
data source is and also on the choices you made in the New Model Wizard. EOModeler can read all
of the following from a data source and compose a model from it:

 ■ table and column names

 ■ column data types, including the width constraint of string data types

 ■ primary keys

 ■ constraints defined in the database such as “NOT NULL” and “UNIQUE”

 ■ foreign key constraints (which are expressed in models as relationships)

 ■ stored procedures

A model contains not only the information it reads from a data source, but also values it derives from
that information, including

 ■ entity and attribute names

 ■ a mapping between the data type of a data column and a corresponding value class (object type),
such as String (java.lang.String), Number (java.lang.Number), and Data
(com.webobjects.foundation.NSData)

EOModeler derives entity names by taking a data-source table name and making all of it lowercase
except for the first letter. It then removes underscore characters and capitalizes the first character
following each removed underscore. Table 1-2 gives an example.

Table 1-2 Table name to entity name mapping

Model entity nameData-source table name

PersonPERSON

PersonPhotoPERSON_PHOTO

PersonReviewNotesPERSON_REVIEW_NOTES

Attribute names are based on corresponding database columns. They are derived in the same way
as entity names except that EOModeler doesn’t capitalize the first character. EOModeler follows the
Java convention for naming methods and instance variables. An example appears in Table 1-3.

Table 1-3 Column name to attribute name mapping

Model attribute nameData-source column name

nameNAME

lastNameLAST_NAME

finalImageNameFINAL_IMAGE_NAME

What a New Model Includes 25
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

Although default entity and attribute names follow a naming convention, you can choose to use
arbitrary names. All that really matters is that the external names of the entities match the table names
in the schema and that the external names of the attributes match the column names in the tables.
However, since business objects are Java objects, your code will be more readable and manageable
if you follow the default naming convention for entities and attributes which follows standard Java
naming conventions.

Checking for Consistency

EOModeler provides consistency checking to confirm that your model is valid. For example, a model
that has entities without primary keys or relationships without joins is not valid.

You can check your model at any time by choosing Check Consistency from the Model menu.
Consistency checking is also invoked automatically whenever you save a model. When a consistency
check occurs and inconsistencies are found, the Consistency Check window appears with a list of
diagnostic messages.

You can choose what consistency checking looks for in EOModeler’s Preferences pane, as shown in
Figure 1-8.

Figure 1-8 Consistency-checking options

26 Checking for Consistency
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Data Modeling and EOModeler

This chapter describes the basic views and major user interface elements of EOModeler. It’s organized
in the following sections:

 ■ “Editing Views” (page 27) introduces the various editors in EOModeler.

 ■ “The Tree View” (page 28) describes how to navigate a model’s entities and relationships in the
tree view.

 ■ “Table Mode” (page 29), “Diagram View” (page 31), and “Browser Mode” (page 32) discuss the
three main editing views.

Editing Views

There are a number of different editors in EOModeler. Of these, there are three main views that you
spend most time in. Each is appropriate for different uses:

 ■ Table mode is appropriate for making basic changes to attributes and attribute characteristics.
It is also the view in which you define custom class names for entities.

 ■ Browser mode is appropriate for traversing relationship paths and for flattening attributes and
relationships.

 ■ Diagram view is appropriate for forming relationships between entities and changing certain
attribute characteristics. It also provides a graphical view of all a model’s elements, including the
relationships between entities.

You can switch between display modes with the Change Display View pop-up menu in the toolbar
or by choosing Diagram View, Browser Mode, or Table Mode from the Tools menu.

In addition to these views, EOModeler includes a dynamic inspector that changes depending on the
element selected. When you select an entity, for example, the inspector becomes the Entity Inspector.
Likewise, when you select an attribute, the inspector becomes the Attribute Inspector. Whereas the
three main views allow you to edit basic characteristics of a model’s elements, an element’s inspector
provides an interface to configure every characteristic of a particular element.

Editing Views 27
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

The inspector for each element itself includes multiple panes. Every selected element has at least three
inspector panes: the basic inspector, an Advanced Inspector, and a UserInfo Inspector. Entities have
two additional panes: the Stored Procedures Inspector and the Shared Objects Inspector. Figure 2-1
shows the three panes in the inspector when an attribute is selected.

Figure 2-1 An attribute’s inspector panes

You use the UserInfo Inspector to add key-value pairs to the UserInfo dictionary. This dictionary
provides a mechanism for extending your model. You can use it to define custom behavior for an
entity or, more commonly, to add meta-information to a model, an entity, or an attribute. Advanced
users sometimes use the UserInfo dictionary when using custom delegates in the access layer.

The Tree View

You navigate a model by selecting entities in the editor’s tree view. The root element of the tree view
represents the whole model. You can double-click the root element to expand and contract the tree
view. When the tree view is expanded, it shows the model’s entities. The tree view is always visible
in table mode and in diagram view. It is not available in browser mode.

You can also expand and contract a model’s entities and stored procedures. Expanding an entity
displays the entity’s relationships, as shown in Figure 2-2. A relationship in the tree view represents
the relationship’s destination entity. You can continue to expand the relationship in the tree view to
display the destination entity’s relationships. Expanding the Stored Procedures folder displays the
model’s stored procedures.

28 The Tree View
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

Figure 2-2 Tree view with an expanded entity

The relationships of Agent's
customers relationship

Agent relationships

The tree view is also useful when performing drag-and-drop operations, such as when dragging an
entity or relationship into WebObjects Builder or into Interface Builder. See the tutorials in the books
Inside WebObjects: Web Applications and Inside WebObjects: Java Client Desktop Applications for more
information.

Table Mode

The default view mode in EOModeler is table mode. In this mode, EOModeler displays a tree view
for viewing a model’s entities and relationships within those entities, and a table view whose contents
change depending on what’s selected in the tree view. You can use table mode to edit many
characteristics of entities or of an entity’s attributes.

When the root of the tree view is selected, the table view displays the classes with which each entity
is associated. When a particular entity is selected in the tree view, the table view changes to display
that entity’s attributes and relationships.

Table Mode 29
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

Figure 2-3 Table mode with the entire model selected

If you switch to another view mode, you can always return to table mode by choosing Table Mode
from the Tools menu.

Figure 2-4 shows the table view when the root of the tree view is selected (the root is the name of the
model file). The model’s entities are displayed, one per row. The columns of the table display
information about each entity: the classes with which each entity is associated, whether the entity is
read-only, the name of each entity’s corresponding database table, and so on.

Figure 2-4 A model’s components in table mode

30 Table Mode
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

When an entity is selected in the tree view, the table view displays that entity’s attributes and
relationships, as shown in Figure 2-5. The attributes shown in Figure 2-5 are displayed in italics to
indicate that they are inherited from a parent entity. Inheritance is an advanced modeling technique
that is discussed in “Modeling Inheritance” (page 67).

The External Type column represents the data type of the attribute in the data source, such as varchar,
long, and int. The Value Class (Java) column represents the object type used when the column is
mapped to an enterprise object’s attribute. The Value Type column represents how the model’s JDBC
adaptor plug-in more specifically deals with different object types. See “Value Type” (page 42) for
more details.

Figure 2-5 An entity’s attributes and relationships

Attributes

Relationships

The information you see in the table view when an entity is selected in the tree view depends on the
columns visible in the table view. You can add columns by selecting one from the Add Column pop-up
menu in the table view. When you add a column to the table, the corresponding menu item is removed
from the Add Column pop-up menu. You can remove columns from the table view by selecting a
column header and pressing Delete.

Diagram View

In diagram view, you see a visual representation of your model’s entities, their attributes, and most
important, the relationships between entities, as shown in Figure 2-6. As with table mode, you can
use the diagram view to edit components of the model (such as changing attribute names and assigning
primary keys to entities) but its editing capabilities are more limited. Diagram view is also useful for
printing models.

Diagram View 31
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

Figure 2-6 Diagram view

In this view, you can specify which entities are displayed, what kind of attributes are displayed (such
as primary keys, class properties, or relationships), and what kind of information about the model’s
relationships is displayed (such as optionality and propagate primary key) by using the options at
the top of the view.

You can also use diagram view to create relationships between entities. By Control-dragging from
one relationship key to another, diagram view creates relationships between two entities. Forming
relationships this way creates two relationships: one from the source entity to the destination entity
and an inverse relationship between the two entities.

Browser Mode

The browser mode is useful for traversing an entity’s relationships and also for creating flattened
attributes and relationships within an entity. To display the attributes for a particular entity, select
the entity in the left-most column while in browser mode. The attributes of that entity then appear
in the column to the right of the entity along with the entity’s relationships.

Figure 2-7 shows the browser mode traversing the Agent entity, the customers relationship in the
Agent entity, and the suggestedListings flattened relationship in the Customers entity (which is
the destination of Agent’s customers relationship).

32 Browser Mode
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

Figure 2-7 Browser mode

Browser Mode 33
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

34 Browser Mode
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Using EOModeler

This chapter is divided into the following sections:

 ■ “Attribute Characteristics” (page 35) describes all the possible characteristics attributes can have,
including value class, value type, and read and write formats. It also describes how to edit each
characteristic.

 ■ “More About Attribute Characteristics” (page 38) provides more detail on certain characteristics
like class property, locking, definition (derived attributes), and primary key.

 ■ “Prototype Attributes” (page 43) discusses what prototype attributes are, how to create them,
and how to assign them to attributes.

 ■ “Flattened Attributes” (page 44) discusses when and how to flatten attributes.

Attribute Characteristics

EOModeler provides three mechanisms for viewing and modifying an entity’s attributes: the table
mode of the model editor, the diagram view of the model editor, and the Attribute Inspector. You
can use any of the mechanisms to examine the characteristics of your model’s attributes and to make
refinements. Each has advantages over the other and is useful in different circumstances.

To display an entity’s attributes in table mode, select an entity in the tree view. Figure 3-1 shows the
attributes of an entity called Rating.

Figure 3-1 An entity’s attributes

Add columns
with this menu

Attribute Characteristics 35
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

Each table column corresponds to a single characteristic of the attribute, such as its name, external
type, or precision. By default, the columns included in this view represent only a subset of possible
characteristics you can set for a given attribute. To add columns for additional characteristics, you
use the Add Column pop-up menu in the lower-left corner of the table, as shown in Figure 3-1. You
can also resize and rearrange columns in the table.

“Table 4-1” describes the characteristics you can set for an attribute. Unless otherwise specified, the
instructions are for editing the characteristic in the model editor’s table mode. Some of the
characteristics are described in more detail in the cross-referenced sections.

Table 3-1 Attribute characteristic definitions

How you modify itWhat it isCharacteristic

Click in the column with the
checkmark to toggle the option
on and off. You can also edit this
characteristic in the Attribute
Inspector.

Indicates whether the attribute can have a null
value. See “Allows Null” (page 38).

Allows Null

Click in the diamond column to
toggle the option on and off. You
can also edit this characteristic in
diagram view.

Indicates that you want to include the attribute
in your Enterprise Object classes. See “Class
Property” (page 38).

Class
Property

Click in the column with the two
opposing arrows to toggle the
option on and off.

Indicates that you want to include the attribute
in your Enterprise Object classes that live on the
client side of Java Client applications. See
“Client-Side Class Property” (page 38).

Client-Side
Class
Property

Edit the table cell.The name of the column in the data source that
corresponds to the attribute.

Column

Edit the table cell.The SQL definition for a derived attribute. Note
that Column and Definition are mutually
exclusive; you can’t set both. Setting one clears
the other. See “Definition (Derived
Attributes)” (page 39).

Definition

Choose a value from the pop-up
menu.

The data type of the attribute as it’s understood
by the data source.

External Type

Click in the pad-lock column to
toggle locking off and on for a
particular attribute. You can also
edit this characteristic in diagram
view.

Indicates whether an attribute participates in
optimistic locking. See “Locking” (page 40).

Locking

Edit the table cell. You can also
edit this characteristic in diagram
view.

The name of the attribute as it appears in your
application and in your enterprise objects.
EOModeler derives a default name based on the
corresponding column in the data source which
you can edit if necessary.

Name

36 Attribute Characteristics
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

How you modify itWhat it isCharacteristic

Edit the table cell or use the
Attribute Inspector.

The number of significant digits. The number
12.34 has a precision of four and a scale of 2.

Precision

Click in the key column to toggle
the primary key off and on. You
can also edit this characteristic in
diagram view.

Declares whether a property is or is part of the
entity’s primary key. See “Primary Key” (page
22).

Primary Key

Choose a value from the pop-up
menu. See “Prototype
Attributes” (page 43) to learn
where these values are defined.

A prototype attribute from which this attribute
derives its characteristics. See “Prototype
Attributes” (page 43).

Prototype

Edit the table cell.The format string that’s used to format the
attribute’s value for SQL SELECT statements. In
the string, %P is replaced by the attribute’s
external name. This string is used whenever the
attribute is referenced in a SQL select statement
or qualifier. See “Read Format and Write
Format” (page 41).

Read Format

Use the Advanced Attribute
Inspector.

Indicates whether the attribute is read only.Read Only

Edit the table cell or use the
Attribute Inspector.

The number of digits to the right of the decimal
point. Can be negative. Applies only to
noninteger, numerical types. The number 12.34
has a scale of 2.

Scale

Not applicable in WebObjects 5.Value Class

Edit the table cell or use the
Attribute Inspector.

The Java type to which the attribute will be
coerced in your enterprise objects.

Value Class
(Java)

Not applicable in WebObjects 5.Value Class
(Obj-C)

Edit the table cell or use the
Attribute Inspector.

The conversion character (such as “i” or “d”) the
JDBC adaptor uses to communicate with the data
source. See “Value Type” (page 42).

Value Type

Edit the table cell or use the
Attribute Inspector.

The maximum width in bytes or chars of the
attribute (applies to string and raw data only).

Width

Edit the table cell.The format string that’s used to format the
attribute’s value for SQL INSERT or UPDATE
expressions. In the string, %V is replaced by the
attribute’s external name.

For LDAP data sources accessed via the JNDI
adaptor, write format specifies the pattern used
to generate the relative distinguished name. See
“Read Format and Write Format” (page 41).

Write Format

Attribute Characteristics 37
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

More About Attribute Characteristics

This section provides information about the more complex characteristics available to attributes.

Allows Null

By default, attributes you add to entities allow null values, except in the case of primary keys. This
means that Enterprise Objects allows attributes containing no values to be saved to the data source.
In some cases, such as when using inheritance, allowing null values may be necessary.

Class Property

When an attribute is marked as a class property, Java classes generated by EOModeler contain accessor
methods for that attribute. (However, these Java classes do not contain instance variables for those
attributes since the instance data is accessed by the mechanism of key-value coding.) You should
mark as class properties only those attributes that are useful in your business logic. This reduces the
amount of code to maintain and makes your enterprise object classes more readable.

Primary keys and foreign keys should not be marked as class properties. This is for two reasons:
Enterprise objects have no knowledge of the primary and foreign keys of the tables from which they
are mapped, and these keys are of no use to your business logic. Also, to ensure that the automatic
primary key generation feature of Enterprise Objects is properly invoked, primary keys must not be
marked as class properties.

In the process of building enterprise objects, if you find that you need access to primary or foreign
keys, there are utility classes and methods that allow you to access these keys even when they are
not marked as class properties. See the API reference in the com.webobjects.eoaccess package for
EOEntity.primaryKeyAttributes and EOEntity.primaryKeyForGlobalID, as well as the API
reference for com.webobjects.eocontrol.EOClassDescription.

Client-Side Class Property

This attribute characteristic applies only to three-tier Java Client or Cocoa client applications. It plays
a vital role in the process of business logic partitioning. This is the process in which you choose the
data that is made available to the client application.

For example, a Customer entity might include an attribute called creditCardNumber. While this
attribute is probably important to the server-side application for processing orders, it is considered
sensitive data and should not be made available to client applications. To ensure that client applications
don’t have access to this attribute, it should not be marked as a client-side class property.

See Inside WebObjects: Java Client Desktop Applications for detailed information on the client-side class
property characteristic, including a tutorial.

38 More About Attribute Characteristics
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

Definition (Derived Attributes)

This characteristic applies only to derived attributes. Derived attributes are usually calculated from
other attributes, such as multiplying an employee’s monthly salary by twelve or deriving a person’s
full name from first name and last name attributes. The syntax of a derived attribute definition is a
SQL statement. To define an annual salary, for instance, you would multiple a MONTHLY_SALARY
column by twelve. Figure 3-2 shows the Attribute Inspector for a derived attribute that does just this.

Figure 3-2 Derived attribute syntax

Derived attributes are effectively read-only since there is no place to write them back to. You could
get the value of a derived attribute and write it back to another column but that requires another
attribute. And if you need to store the value of a derived attribute, it’s usually much better to perform
the derivation in business logic rather than at the attribute level. (Alternatively, you could use custom
read and write formats to accomplish this. See “Read Format and Write Format” (page 41)). By
deriving attributes at the business-logic level, you write the code in Java, you avoid writing
database-specific SQL, and you get the full benefits of enterprise objects.

One of the most important benefits is the internal update notifications that enterprise objects send
and receive. In the previous example, if you change an employee’s monthly salary, the derived
attribute that calculates the annual salary is then incorrect. And since the attribute is derived, its value
as it exists in the enterprise object is immutable. Unless the object is flushed from the access layer’s
snapshot and refreshed, the derived attribute is stale and inaccurate.

Derived attributes can be useful but should probably be reserved for read-only applications and can
usually be replaced by values derived in business logic. Also, because derived attributes don’t directly
map to anything in the database, they cannot be used for locking or as primary keys.

More About Attribute Characteristics 39
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

Locking

As introduced in “Locking” (page 40), the Enterprise Object technology supports different locking
strategies to deal with the problem of update conflicts. In multi-user database applications in which
many users have write access, there is a possibility that multiple users may view and edit the same
record concurrently. A good locking strategy can help you avoid problems if this situation arises.

The default locking strategy used by Enterprise Objects is optimistic locking. With this strategy,
update conflicts aren’t detected until users try to save an object’s changes to the data store. At that
point, Enterprise Objects checks the database row to see if it’s changed since the object being edited
was fetched. If the row has been changed, the save operation is rolled back and an optimistic locking
exception is thrown.

Enterprise Objects determines that a database row has changed since its corresponding enterprise
object was fetched using a technique called snapshotting. When Enterprise Objects fetches an object
from the data store, it records a snapshot of the state of the corresponding database row. When changes
to an object are saved to the database, the snapshot is compared with the corresponding database
row to ensure that the row data hasn’t changed since the object was last fetched.

Enterprise Objects creates snapshots based on the attributes that are selected for locking. The general
rule is that only attributes that are guaranteed to contain a small amount of easily parseable data
should be selected for locking. For example, an attribute with external type object, blob, or clob
should never be selected for locking (except in very rare cases).

Primary Key

Primary keys are used to identify uniquely database rows and also to provide attributes for forming
relationships. Each entity in your data model needs a primary key. (If your data model represents an
LDAP data source via the JNDI adaptor, each entity needs an attribute named
relativeDistinguishedName, which is roughly analogous to a primary key.) Primary keys in entities
map directly to primary keys in tables.

It is generally recommended that primary keys be kept simple. It’s quite common to use int data
types as primary keys but other numerical formats also work well. Just as with locking attributes,
you should avoid attributes that contain large amounts of data and you usually do not want to use
binary-type attributes as primary keys. (There are some exceptions as Enterprise Objects provides
facilities to compare columns that map to an Internal Data Type of NSData).

Depending on your application requirements, you may need to use a compound primary key—that
is, a primary key composed of multiple attributes. If you must meet this requirement, Enterprise
Objects provides facilities to help you with this task. You can designate a compound primary key in
a model by marking multiple attributes as primary key attributes. Then, you can use the API provided
in the access layer to generate custom primary keys based on these attributes. See the method
description in the com.webobjects.eoaccess API reference for
EODatabaseContext.Delegate.databaseContextNewPrimaryKey for more details.

You should be careful with the primary key characteristic. The primary key identified in an entity
must correspond to a primary key constraint defined in the database table with which that entity is
associated. So although EOModeler provides user interface to easily mark and unmark attributes as
primary keys, you should not do so unless you also make a corresponding change in the database.
And if you do this, you risk breaking existing relationships.

40 More About Attribute Characteristics
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

Read Format and Write Format

In addition to mapping database rows to instance variables or to an object’s data, EOAttribute objects
can also alter how database values are selected, inserted, and updated. This is accomplished by
defining special format strings for particular attributes. These format strings allow an application to
extend its reach down to the database server for certain operations. These operations are then
performed by the database server, which may or may not be advantageous to your application.

Using a custom read format (for SELECT operations), you can create a kind of derived attribute
without defining the attribute as derived. For example, rather than defining a derived attribute to
calculate an employee’s annual salary based on monthly salary multiplied by twelve, you can derive
this value by setting the read format to the same SQL string you’d use were you to declare the definition
for a derived attribute. The advantage of using custom read formats over derived attributes is that
you can easily write the derived value back to the data source by including a complimentary write
format.

The difference between attributes that are declared to be derived and attributes that are derived from
custom read formats is that the latter performs an operation on itself whereas derived attributes
operate on values in other attributes, often aggregating them or otherwise modifying them. So, whereas
the definition of a derived attribute that calculates an annual salary based on a monthly salary would
be MONTHLY_SALARY * 12, the read format for an attribute that does the same thing would be %P *
12. The former does not require a column in the database whereas the latter does.

Custom format strings can also be used for INSERT and UPDATE operations. For example, if you
want to store an employee’s salary in monthly terms rather than in annual terms, you would set the
write format to be %V /12. So, whenever the salary attribute is written back to the database, its value
is divided by 12.

Read format strings use “%P” as the substitution character for the value that is being formatted
whereas write format strings use “%V” as the substitution character. If, for example, you are deriving
an annual salary from a column that stores salaries in monthly terms (MONTHLY_SALARY), the format
string is %P * 12. So rather than sending the database server a message of SELECT MONTHY_SALARY,
it is instead sent SELECT MONTHY_SALARY * 12.

You can use any legal SQL value expression in a format string and you can even use database-specific
features such as functions. (A common case function is one that converts data from one type to another
when it is read or written, such as converting a string to a date when writing and from a date to a
string when reading). Using database-specific features affords the application more flexibility but
limits its portability. You are responsible for ensuring that the SQL is well-formed and can be
understood by the database server.

Using custom read and write formats is probably useful only when dealing with legacy data in which
the stored data is out of sync with your current business logic. In the examples used above, the old
business logic would be to store salaries based on monthly terms. The great database application
you’re writing uses this legacy data store but displays salaries in annual terms. To maintain the
integrity of the data in the database, it’s important to divide annual salary by twelve upon each
commit. This transformation, however, should be transparent to the end user, so using custom read
and write formats solves this problem.

More About Attribute Characteristics 41
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

Value Type

When you choose a value class for a particular attribute, you sometimes do not provide Enterprise
Objects with all the information the JDBC adaptor needs to negotiate with the data source.

For example, when you specify Number as the value class for a particular attribute, you are telling
Enterprise Objects to use java.lang.Number, which is an abstract class. This is where the value type
characteristic steps in. It specifies the exact class an attribute should map to.

The possible value types for numeric attributes are as follows(note case):

 ■ b—java.lang.Byte

 ■ s—java.lang.Short

 ■ i—java.lang.Integer

 ■ l—java.lang.Long

 ■ f—java.lang.Float

 ■ d—java.lang.Double

 ■ B—java.math.BigDecimal

 ■ c—java.lang.Boolean

The value type also specifies which JDBC methods are used to send and retrieve the data to and from
the database. These value types affect which method the java.sql.PreparedStatement object uses
to transfer text data between the database and the JDBC adaptor. For attributes with a value class of
String, the following value types are defined:

 ■ <none>—uses setString if the text is less than the database’s advertised maximum varchar
length and setCharacterStream if it is too large. If the database fails to advertise a maximum
length, the default is 256 characters.

 ■ S—uses setString regardless of the text’s length.

 ■ C—uses setCharacterString regardless of the text’s length.

 ■ E—converts the text into raw UTF-8 bytes and then uses setBinaryStream to save them in a
binary-typed column in the database.

 ■ c—tells the adaptor to generate SQL using RTRIM to strip off all trailing spaces.

Database columns of type char hold string values that are right-padded with spaces to the width of
the column. String values in Enterprise Objects, however, normally do not have trailing spaces for
performance and other efficiency reasons. An attribute that maps to an external type of char should
have a value type of c to tell the JDBC adaptor to trim trailing spaces when fetching values that
correspond to that attribute. If the value type is left blank for attributes that map to an external type
of char, then no trimming occurs. Attributes that map to varchar columns are never trimmed,
regardless of value type.

S is the appropriate value type for most text columns. C is good for columns that usually contain large
amounts of data. c should be used when trailing spaces are not significant in a char column. It is not
recommended to use E, except when absolutely necessary. It is the database’s responsibility to handle
text encoding issues and using E usually indicates that the database is not properly configured.

42 More About Attribute Characteristics
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

For attributes with a value class of NSTimestamp, the following value types are defined:

 ■ <none>—uses getObject on the java.sql.ResultSet object and setObject on the
java.sql.PreparedStatement object. It assumes the database can provide a value compatible
with a java.sql.Timestamp object.

 ■ D—java.util.Date uses setDate and getDate.

 ■ t—java.sql.Time uses getTime and setTime.

 ■ T—java.sql.Timestamp uses getTimestamp and setTimestamp.

 ■ M—use in place of D if using Microsoft SQL Server. Supports only java.sql.Date.

Prototype Attributes

To make creating models easier, EOModeler supports prototype attributes. These are special attributes
from which other attributes derive their settings. A prototype can specify any of the characteristics
you normally define for an attribute. When you create an attribute, you can associate it with one of
these prototypes, and the attribute’s characteristics are then set from the prototype definition.

For example, you can create a prototype attribute called lastModified whose value class is Date,
whose external type is datetime, and which corresponds to a column named LAST_MODIFIED.
Then, when you create other entities, you can create an attribute and associate it with this prototype
and the prototype’s values are copied in to the new attribute. You can then change any values in or
add values to the new attribute. Any value that is inherited from the prototype that you don’t override
uses the value defined in the prototype.

Creating Prototype Attributes

The prototypes you can assign to attributes can come from two places:

1. An entity named EOAdaptorNamePrototypes, where AdaptorName is the name of the adaptor for
your model. WebObjects 5.2 includes an adaptor for JDBC data sources and an adaptor for JNDI
data sources. So you can create a prototype entity called either EOJDBCPrototypes or
EOJNDIPrototypes, depending on the adaptor you use.

2. An entity named EOPrototypes.

To create a prototype attribute, first create a prototype entity—an entity named either
EOAdaptorNamePrototypes or EOPrototypes—and add an attribute to it. Figure 3-3 shows an attribute
in a prototype entity. It shows all the values that prototype attributes can define: column name, value
class, external type, and value type.

Figure 3-3 A prototype entity

Prototype Attributes 43
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

Assigning a Prototype to an Attribute

To assign a prototype attribute to an attribute, reveal the Prototype column in table mode, and select
a prototype attribute from the pop-up menu. The prototype attributes that appear in the pop-up list
in the Prototype column include prototype attributes defined in any entity in any model in the
application’s model group, which includes the current model.

Figure 3-4 shows an attribute named lastModified which inherits characteristics from the prototype
attribute called lastModified. As you can see in the figure, characteristics that attributes derive from
their prototype are colored differently than are other characteristics.

Figure 3-4 An attribute using a prototype

Attribute using a
prototype definition

When you use prototype attributes, in some cases you want to derive only some of the values from
the prototype. To do this, just set the characteristic of the attribute to the value you want. The rest of
the derived characteristics still resolve to the values set in the prototype. The prototype selected in
the Prototypes column then appears with an asterisk. Figure 3-5 shows an attribute that uses only
part of a prototype definition.

Figure 3-5 An attribute using part of a prototype

Attribute using part of
a prototype definition

Flattened Attributes

A flattened attribute is a special kind of attribute that you effectively add from one entity to another
by traversing a relationship. When you form a to-one relationship between two entities (such as
Person and PersonPhoto), you can add attributes from the destination table to the source table. For
example, you can add a personPhoto attribute to the Person entity. This is called “flattening” an
attribute and is equivalent to creating a joined column—it allows you to create objects that extend
across tables.

When Should You Flatten Attributes?

Flattening attributes is just another way to conceptually “add” an attribute from one entity to another.
A generally better approach is to traverse the object graph directly through relationships. Enterprise
Objects makes this easy by supporting the notion of key paths.

44 Flattened Attributes
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

The difference between flattening attributes and traversing the object graph (either programmatically
or by using key paths) is that the values of flattened attributes are tied to the database rather than the
object graph. If an enterprise object in the object graph changes, a flattened attribute can quickly get
out of sync.

For example, suppose you flatten a departmentName attribute into an Employee object. If a user then
changes an employee’s department reference to a different department or changes the name of the
department itself, the flattened attribute won’t reflect the change until the changes in the object graph
are committed to the database and the data is refetched (this is because flattened attributes are derived
attributes—see “Definition (Derived Attributes)” (page 39) for more details). However, if you’re
using key paths in this scenario, users see changes to data as soon as they happen in the object graph.
This ensures that your application’s view of the data remains internally consistent.

Therefore, you should use flattened attributes only in the following cases:

 ■ If you want to combine multiple tables joined by a one-to-one relationship to form a logical unit.
For example, you might have employee data that’s spread across multiple tables such as ADDRESS,
BENEFITS, and so on. If you have no need to access these tables individually (that is, if you’d
never need to create an Address object since the address data is always subsumed in the Employee
object), then it makes sense to flatten attributes from those entities into the Employee entity.

 ■ If your application is read-only.

 ■ If you’re using vertical inheritance mapping. See “Vertical Mapping” (page 69).

Flattening an Attribute

To flatten an attribute:

1. In browser mode, select the entity in which you want the flattened attribute to appear and select
the relationship whose destination entity holds the attribute you want to flatten.

For example, in the Real Estate model, to flatten the photo attribute from the PersonPhoto entity
into the Person entity, select the Person entity and select the personPhoto relationship, as shown
in Figure 3-6.

Figure 3-6 Selecting the relationship in which the attribute to flatten exists

Entity to flatten into Relationship in which the
attribute to flatten exists

The attribute to flatten

Flattened Attributes 45
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

2. Select the attribute in the destination entity (photo) for which you want to create the flattened
attribute and choose Flatten Property from the Property menu.

The flattened attribute appears in the list of properties for the Person entity as personPhoto_photo,
as shown in Figure 3-7. The format of the name reflects the traversal path: the attribute photo is
added to the Person entity by traversing the personPhoto relationship.

Figure 3-7 An attribute flattened

The flattened attribute

If you select the flattened attribute and display the Attribute Inspector, you’ll see that the attribute is
considered derived and its definition is a key path, as shown in Figure 3-8. Just as with other types
of attributes, you can edit the flattened attribute’s name in the inspector.

Figure 3-8 A flattened attribute in the Attribute Inspector

46 Flattened Attributes
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Working With Attributes

This chapter describes how to create and configure relationships in EOModeler. It also provides an
introduction to relationships. It is organized in the following sections:

 ■ “About Relationships” (page 47) introduces the concept of relationships as defined by the
entity-relational paradigm. It also discusses basic principles of relationships such as cardinality,
joins, and relationship keys.

 ■ “Creating Relationships” (page 50) describes how to use EOModeler to create relationships.

 ■ “Tips for Specifying Relationships” (page 53) provides some general design patterns when
creating relationships.

 ■ “Adding Referential Integrity Rules” (page 54) discusses the various referential integrity rules
supported by Enterprise Objects, such as the delete rules and optionality.

 ■ “Flattened Relationships” (page 55) describes what flattened relationships are and how to form
them in EOModeler.

 ■ “Modeling Many-to-Many Relationships” (page 57) discusses how to build many-to-many
relationships using EOModeler.

About Relationships

Relational databases derive much of their value from the relationships between the tables they store.
Likewise, the Enterprise Object technology includes infrastructure that brings relationship data to
life in data-driven applications.

A relationship expresses the affinity between tables in a data source. In the most simple case, a
relationship expresses a meaningful connection between two tables in a data source. You can also
think of relationships as cross-references much like entries in a book’s index. A single index entry
can cross-reference one or more other index entries so that there is a relationship between index
entries.

For example, a Person table could be related to a PersonPhoto table by a relationship called toPhoto.
In relationship lingo, the Person table is referred to as the source table or source entity that contains
source records. The PersonPhoto table is referred to as the destination table or destination entity that
contains destination records.

About Relationships 47
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

Directionality

Relationships are unidirectional, which means that the path that leads from the source to the destination
can’t be traveled in the opposite direction—you can’t use a relationship to go from the destination to
the source. So, although you can use a toPhoto relationship to find the photo for a particular person,
you can’t use this relationship in reverse to get a person’s name.

Unidirectionality is enforced by the way a relationship is resolved. Resolving a relationship means
finding the correct destination record or records given a specific source record.

Bidirectional relationships—in which you can look up records in either direction—can be created by
adding a separate return-trip, or inverse, relationship. But there is no concept of a single relationship
that is bidirectional.

Cardinality

Every relationship has a cardinality. The cardinality defines how many destination records can
potentially resolve the relationship. In relational database systems, there are generally two cardinalities:

 ■ to-one relationship—for each source record, there is exactly one corresponding destination record

 ■ to-many relationship—for each source record, there may be zero, one, or more corresponding
destination records

An employeeDepartment relationship is an example of a to-one relationship: An employee can be
associated with only one department in a company. An Employee entity might also be associated
with a Project entity. In this case, there would be a to-many relationship from Employee to Project
called projects since an Employee can have many projects.

Relationship Keys

The construction of a relationship requires that you designate at least one attribute in each entity as
a relationship key. Relationship keys are necessary so a relationship can be resolved. For example,
the toPhoto relationship which relates a Person entity to a PersonPhoto entity, uses two relationship
keys: personPhotoID, the source key in the Person entity, and personPhotoID, the destination key
in the PersonPhoto entity.

Figure 4-1 shows the PERSON table’s columns.

Figure 4-1 Foreign key for PersonPhoto in Person table

When Enterprise Objects resolves this relationship, it creates a join table by looking up the
PERSON_PHOTO_ID key in the PERSON_PHOTO table. In Figure 4-1, the row with PERSON_ID = 2 has a
value of 1 in the PERSON_PHOTO_ID column. The relationship specifies that the PERSON_PHOTO_ID

48 About Relationships
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

column in the PERSON table resolves to the PERSON_PHOTO_ID column in the PERSON_PHOTO table. As
shown in Figure 4-2, the row with PERSON_PHOTO_ID = 1 in the PERSON_PHOTO table holds binary data
that represents a photo.

Figure 4-2 PersonPhoto primary key in PersonPhoto table

There are some general guidelines when choosing which attributes to use as relationship keys. In
to-one relationships, the destination key must be a primary key in the destination entity. In to-many
relationships, the destination key is usually a foreign key in the destination entity (which is most
often a copy of the source entity’s primary key). The source key or foreign key should emulate the
destination key in that the data types must be the same and the names should be similar.

So, in the previous example, PERSON_PHOTO_ID is the primary key for the PERSON_PHOTO table and it
is a column of type int. In the PERSON table, PERSON_PHOTO_ID is a foreign key that is of the same
type and name as the primary key it maps to in the PERSON_PHOTO table.

When you use relationship keys to express an affiliation between two entities, keep in mind these
general rules:

 ■ For to-one relationships, the source attribute is a foreign key in the source entity while the
destination key is the primary key of the destination entity.

 ■ For to-many relationships, the source attribute is the primary key in the source entity (but it can
also be a foreign key in the source entity) while the destination key is a foreign key of the
destination entity.

If you have consistency checking enabled in EOModeler, it warns you if any to-one relationships in
your model have destination keys that are not primary keys.

Reflexive Relationships

A unique kind of relationship is the reflexive relationship—a relationship that shares the same source
and destination entity. Reflexive relationships are important when modeling data in which an instance
of an entity points to another instance of the same entity.

For example, to show who a given person reports to, you could create a separate manager entity. It
would be easier, however, to just create a reflexive relationship. The managerID attribute is the
relationship’s source key whereas employeeID is the relationship’s destination key. Where a person’s
managerID is the employeeID of another employee object, the first employee reports to the second.
If an employee doesn’t have a manager, the value for the managerID attribute is null in that employee’s
record.

Figure 4-3 shows this relationship as it exists in the Employee table. The row with NAME = Brent
references the row with NAME = K. Boss since the manager relationship is defined with MANAGER_ID
as the source key and EMPLOYEE_ID as the destination key.

About Relationships 49
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

Figure 4-3 Reflexive relationship table

This record
references this record

Reflexive relationships can represent arbitrarily deep recursions. So, in the model above, a person
can report to another person who reports to yet another person, and so on. This could go on until a
person’s managerID attribute is null, which denotes that person reports to no one.

Owns Destination and Propagate Primary Key

The Owns Destination option lets you specify whether the relationship’s source owns its destination
objects. When a source object owns its destination object, for example, as when an Agent object owns
its Customer objects, when a destination object (Customer) is removed from the relationship, it is also
removed from the data source. Ownership implies that an owned object cannot exist without its
owner.

The Propagate Primary Key option lets you specify that the primary key of the source entity should
be propagated to newly inserted objects in the destination of the relationship. That is, when inserting
objects that are the destination of the relationship, this option suppresses primary key generation for
the destination entity and instead uses the source object’s primary key as the primary key for the
newly inserted destination object.

This option is used for an owning relationship where the owned object has the same primary key as
the source. Propagating primary key confers a performance improvement as it doesn’t require the
generation of a primary key for the destination entity. Primary key propagation is also commonly
used to generate primary keys for join tables in many-to-many relationships.

Creating Relationships

If the data source on which your model is based includes foreign key definitions, these definitions
are automatically expressed in your model when you create a model from an existing data source
with the New Model Wizard. But if you are creating the schema within EOModeler, you need to
define relationships in the model editor.

EOModeler provides two mechanisms for forming relationships. You can form them in the model
editor’s diagram view or in the Relationship Inspector. Using the diagram view is the quickest way
to create new relationships, but using the Relationship Inspector gives you access to more relationship
characteristics. Each mechanism is discussed in the following sections.

Forming Relationships in the Diagram View

To create a relationship in diagram view, Control-drag from a source attribute to a destination attribute,
as shown in “Figure 5-4”.

50 Creating Relationships
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

Figure 4-4 Control-drag from source key to destination key to form a relationship

The cardinality of the relationship is determined by the primary key characteristic of the destination
attribute. If the destination attribute is the entity’s primary key, the relationship is modeled as a to-one
relationship. If the destination attribute is a foreign key, the relationship is modeled as a to-many
relationship.

Control-dragging to form a relationship actually creates two relationships: one in the source attribute’s
entity and an inverse relationship in the destination attribute’s entity. In Figure 4-5, Control-dragging
from Person.personPhotoID (a foreign key) to PersonPhoto.personPhotoID (a primary key) creates
a to-one relationship from the Person entity to the PersonPhoto entity and a to-many relationship
from the PersonPhoto entity to the Person entity.

Figure 4-5 Control-dragging also creates an inverse relationship

Single arrow indicates
a to-one relationship

Double arrow indicates
a to-many relationship

In Figure 4-5, the single line indicating the relationships between the Person and PersonPhoto entities
should not be mistaken for a “bidirectional” relationship, which is not possible in the object-relational
model. It is actually two relationships but when you create a relationship in diagram view, it appears
as a single line.

For the personPhoto relationship, it doesn’t make sense for the inverse relationship (persons in
PersonPhoto) to be a to-many relationship. You can make it a to-one relationship in the Relationship
Inspector as well as set other characteristics of the relationship. The Relationship Inspector is described
in detail in “Forming Relationships in the Inspector” (page 51) and “Forming Relationships Across
Models and Data Sources” (page 53).

Forming Relationships in the Inspector

Creating relationships in the Relationship Inspector is a more manual process than creating one in
the diagram view. The inspector provides only the ability to configure a relationship that already
exists. So before you can edit a relationship in the Relationship Inspector, you must add a relationship
to an entity.

Creating Relationships 51
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

Assuming that the entities in the previous example exist (Person and PersonPhoto), you can form a
relationship between them by selecting an entity (Person) and then choosing Add Relationship from
the Property menu. Then, select the new relationship in the tree view by clicking the plus sign next
to an entity and open the Relationship Inspector by choosing Inspector from the Tools menu.

Now you can use the Relationship Inspector to configure the relationship. Follow these steps and
refer to Figure 4-6 for clarity:

1. In the Relationship Inspector, select the destination entity (PersonPhoto) from the Entity list in
the Destination box.

2. Select the source attribute (personPhotoID) in the Source Attributes list.

3. Select the destination attribute (personPhotoID) in the Destination Attributes list.

4. Make sure the relationship has the proper cardinality, To One in this case.

5. Click Connect.

Figure 4-6 Using the Relationship Inspector to build a relationship

EOModeler assigns the relationship a default name based on the name of the destination entity and
the cardinality of the relationship. You can edit this name using the Relationship Inspector or in table
mode.

The source and destination attributes you chose are based on general rules for relationships, which
are described in “Relationship Keys” (page 48).

52 Creating Relationships
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

Forming Relationships Across Models and Data Sources

The entities in one model can have relationships to the entities in another model. You can form such
relationships even if the models map to different databases and different database servers.

When you add a model to a project, it becomes part of a model group. Every Enterprise Objects
application includes a default model group, even if the project contains only one model. Each model
you add to a project automatically becomes part of the project’s model group. The only regulation
between multiple models in a model group is that entity names must be unique.

To form a relationship from one model to another, use the Relationship Inspector as follows:

1. Add a relationship to the entity you want to use as the source of the relationship.

2. In the Relationship Inspector, use the Model pop-up menu to choose the model that contains the
entity you want to use as the relationship’s destination. This menu displays all the models in the
application’s model group. Figure 4-7 shows two models in an application’s model group,
RealEstate and DEO.

Figure 4-7 Multiple models to choose from

Pop-up menu lists
all models in the
application's model group

3. Specify the relationship as you normally would.

Note: You can’t flatten properties across databases, nor can you map inheritance hierarchies across
databases (though you can do both of these things across models that map to the same database).

Tips for Specifying Relationships

The following tips are useful to keep in mind as you add relationships to your model:

 ■ The relationships you define in a model must reflect corresponding implementations in the data
source, as well as the features supported by the adaptor your model uses. Enterprise Objects
doesn’t know, for example, if your adaptor supports left outer joins, so you need to be careful
with regard to the characteristics you set for relationships.

 ■ Use the diagram view to quickly create pairs of inverse relationships by Control-dragging between
source and destination attributes.

Tips for Specifying Relationships 53
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

 ■ Use the Relationship Inspector to specify information about a relationship, such as whether it’s
to-one or to-many, its semantics (join type), the destination model, and the destination entity in
the destination model.

 ■ Relationships can be compound, meaning that they can consist of multiple pairs of connected
attributes. You can specify additional pairs of attributes only in the Relationship Inspector. Simply
select a second source attribute and a second destination attribute and click Connect a second
time.

 ■ A to-one relationship from one foreign key to a primary key must always have exactly one row
in the destination entity—if this isn’t guaranteed to be the case, use a to-many relationship. This
rule doesn’t apply to a foreign key to primary key relationship where a null value for the foreign
key in the source row indicates that no row exists in the destination.

 ■ To-one relationships must join on the complete primary key of the destination entity.

Adding Referential Integrity Rules

You can use the Advanced Relationship Inspector to add referential integrity rules for relationships.
These rules specify relationship characteristics such as optionality and delete rule. The referential
integrity rules you specify are not written back to the data source: When Enterprise Objects creates
objects for relationships, the objects include the referential integrity rules you specify in the model.

Note: The referential integrity rules you specify apply only to the object graph managed by Enterprise
Objects. Therefore, if your data source also specifies referential integrity rules, you are responsible
for avoiding or managing any conflicts between the two sets of rules.

Optionality

The Optionality section lets you specify whether a relationship is optional or mandatory. For example,
you could require that all Document objects have a related Writer object but not require that all
Document objects have a related Illustrator object. When you attempt to save an object that has a
mandatory relationship that is not set (so the relationship is null), Enterprise Objects refuses the save
and displays an error message stating that the object being saved has a mandatory relationship that
must be set.

Delete Rule

The options in the Delete Rule section specify what to do when the source object of a relationship is
deleted. There are four options:

 ■ Nullify disassociates all destination objects from the source object by removing references to
them. So, when an Agent object is deleted, its related Customer objects are not deleted but the
Customer objects’ references to Agent are nullified (the entry in the join table is set to null).

 ■ Cascade deletes all objects that are the destination of a relationship whose source is deleted. So,
when an Agent object is deleted, all of its related Customer objects are also deleted.

54 Adding Referential Integrity Rules
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

 ■ Deny refuses the deletion if a source object has any destination objects. So, if an Agent object has
any Customer objects, deleting the Agent object is denied. In order for the deletion of the Agent
object to succeed, its destination objects (Customer objects) must either be deleted or changed to
something other than destination objects of the Agent object.

 ■ No Action deletes the destination object but does not remove any back references to the source
object. So, if a Customer object is deleted, its reference to its Agent object is not removed. Using
this option may result in dangling references in the data source.

Flattened Relationships

Just as you can flatten attributes (see “Flattened Attributes” (page 44)), you can also flatten
relationships. Flattening a relationship gives a source entity access to relationships that a destination
has with other entities. It’s equivalent to performing a multitable join. Note that flattening either an
attribute or a relationship can result in degraded performance when the destination objects are
accessed, since traversing multiple tables makes fetches slower.

When Should You Flatten Relationships?

As discussed in “When Should You Flatten Attributes?” (page 44), flattening is a technique you
should use only under certain conditions. Instead of flattening an attribute or a relationship, you can
instead directly traverse the object graph, either programmatically or by using key paths. This ensures
that your application maintains an internally consistent view of its data.

There is one scenario in which you might want to use a flattened relationship: If you’re modeling a
many-to-many relationship and you want to perform a multitable hop to access a table that lies on
the other side of an intermediate table.

For example, in the Real Estate database, the Suggestion table acts as an intermediate table between
Customer and Listing. It’s highly unlikely that you would ever need to fetch instances of Suggestion
into your application. In this situation, it makes sense to specify a relationship between Customer
and Suggestion and flatten that relationship to give Customer access to the Listing table.

Flattening a Relationship

Follow these steps to flatten a relationship:

1. Add a relationship from one entity (entity_1) to a second entity (entity_2). For example, add a
to-many relationship called suggestions from Customer to Suggestion.

2. Add a relationship from entity_2 (Suggestion) to a third entity (entity_3, Listing). For example,
add a to-many relationship called listing from Suggestion to Listing.

Flattened Relationships 55
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

3. In browser mode, from entity_1 (Customer), select the relationship to entity_2 (suggestions) to
display its attributes and relationships.

Figure 4-8 Select the relationship that contains the relationship to flatten

Entities Relationships and attributes
of selected entity

4. In the list of attributes and relationships for entity_2 (Suggestion), select the relationship (listing)
you want to flatten.

Figure 4-9 Select the relationship to flatten

Relationships in the entity
pointed to by this relationship

5. Choose Flatten Property from the Property menu. The flattened relationship should appear in
bold typeface as shown in Figure 4-10; the name is derived from the relationship key path.

Figure 4-10 A flattened relationship displayed in browser mode

Flattened relationship
appears in bold

56 Flattened Relationships
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

The flattened relationship (in this example, suggestions_listing) appears in the list of properties
for Customer.

Modeling Many-to-Many Relationships

Modeling a many-to-many relationship between objects is simple: Each object manages a collection
of the other kind. For example, consider the many-to-many relationship between employees and
projects. To think of this relationship in objects, an Employee object has an array of Project objects
representing all of the projects the employee works on; and a Project object has an array of Employee
objects representing the people working on the project.

To model a many-to-many relationship in a database, you have to create an intermediate table (also
known as a correlation or join table). For example, the database for employees and projects might
have EMPLOYEE, PROJECT, and EMPLOYEE_PROJECT tables, where EMPLOYEE_PROJECT is the correlation
table.

Given the relational database representation of a many-to-many relationship, how do you get the
object model you want? You don’t want to see evidence of the correlation table in your object model,
and you don’t want to write code to maintain database correlation rows. With Enterprise Objects,
fortunately, you don’t have to. You can simply use flattened relationships to hide correlation tables.

A model with the following features has the effect of hiding the EMPLOYEE_PROJECT correlation table
from its object model:

 ■ Employee and Project entities whose to-many relationships to the EmployeeProject entity are not
class properties. These to-many relationships (named projectEmployees in this example) are
never instantiated or used at the application level.

 ■ The flattened relationships projects and employees in Employee and Project, respectively, are
class properties.

Consequently, EmployeeProject enterprise objects are never created, Employee objects have an array
of related Projects, and Project objects have an array of related Employees. Furthermore, Enterprise
Objects automatically manages rows in the EMPLOYEE_PROJECT correlation table.

Still, creating a model with the parameters described in this section would take quite a bit of work
and would be error prone. Fortunately, EOModeler does all the work for you.

Follow these steps to create a many-to-many relationship between two entities:

1. Switch to diagram view.

2. Select the entities you want to join in a many-to-many relationship.

Figure 4-11 Two entities before joining in a many-to-many relationship

Modeling Many-to-Many Relationships 57
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

3. Choose Join in Many-to-Many from the Property menu.

This creates a join table between the two entities, adds flattened relationships in the two entities, and
sets the class property characteristic for the new relationship as described in this section. The two
entities in Figure 4-11 when joined in a many-to-many relationship appear in the diagram view as
shown in Figure 4-12.

Figure 4-12 Two entities after being joined in a many-to-many relationship

Join table

58 Modeling Many-to-Many Relationships
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Working With Relationships

This chapter teaches you how to work with entities in EOModeler. It is divided into the following
sections:

 ■ “Entity Characteristics” (page 59) describes the characteristics of entities.

 ■ “Advanced Entity Inspector” (page 60) describes the advanced characteristics you can assign to
entities.

 ■ “Shared Objects Inspector” (page 62) describes how to configure entities to be fetched into the
shared editing context.

 ■ “Stored Procedure Inspector” (page 64) describes how to configure entities to invoke stored
procedures when certain actions occur.

Entity Characteristics

To display a model’s entities in table mode, select the model object in the tree view. Doing this displays
the main characteristics of each entity such as class name and table name. To display the attributes
of a particular entity, select an entity in the tree view. Figure 5-1 shows an entity called Administrator
selected in the tree view and its attributes displayed in the table.

Figure 5-1 The Administrator entity selected in the tree view

Entity Characteristics 59
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

Each table column corresponds to a single characteristic of an entity such as its name or the name of
its database table. By default, the columns included in the table—Name, Table, and Class Name—only
represent a subset of the possible characteristics you can set for a given entity. Figure 5-1 shows some
of the possible additional columns such as Value Type and Client-Side Class Property. To add columns
for additional characteristics, you use the Add Column pop-up menu in the lower left-corner of the
table. To remove a column, select it and press the Delete key.

Table 5-1 describes the characteristics you can set for an entity in the model editor.

Table 5-1 Entity characteristics

DescriptionCharacteristic

The name of the class that corresponds to the entity. If you don’t define a
custom enterprise object class for an entity, the class name defaults to
EOGenericRecord. You should use a fully qualified name but this isn’t strictly
required.

Class Name

The name of the class that corresponds to the entity in the client side of a
three-tier WebObjects Java Client application. If you don’t define a client-side
class, Enterprise Objects looks for a class in the client with the same name
as the server-side enterprise object class. If no such class exists on the client,
it uses EOGenericRecord. You should use a fully qualified name but this
isn’t strictly required.

Client-Side Class
Name

Any valid SQL statement that you want executed when unqualified fetches
are performed on the entity.

External Query

The name your application uses for the entity. By default, EOModeler supplies
a name based on the name of the corresponding table in the data source.

Name

Adds a column with an icon which you can double-click to display an entity’s
attributes.

Open Entity

Specifies an entity’s parent when using inheritance.Parent

Specifies a restricting qualifier that is added to every fetch specification
performed on the entity. Used when modeling inheritance hierarchies.

Qualifier

Specifies if the entity is read-only.Read Only

The name of the table in the data source that corresponds to the entity.Table

Other characteristics of entities can be set in the entity inspectors.

Advanced Entity Inspector

The Advanced Entity Inspector lets you set more complex behavior for entities. To display it, click
the Advanced Entity Inspector button at the top of the window. It appears as shown in Figure 5-2.

60 Advanced Entity Inspector
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

Figure 5-2 The Advanced Entity Inspector

The following list describes the characteristics that can be set in the Advanced Entity Inspector:

 ■ Batch Faulting Size lets you specify the number of faults that should be triggered when you first
access an object of this type that is the destination of a to-many relationship. By providing a
number in this field, you specify that number of faults of the same entity should be fetched from
the data source along with the first fault. This improves performance by minimizing round trips
to the data source.

 ■ External Query lets you specify any SQL statement to execute when Enterprise Objects performs
an unqualified fetch on the entity. The columns selected by this SQL statement must be in
alphabetical order by internal name and must match in number and type with the class properties
specified for the entity.

 ■ Qualifier is used to specify a restricting qualifier. A restricting qualifier maps an entity to a subset
of rows in a table. When you add a restricting qualifier to an entity, it invokes a fetch for that
entity to retrieve objects only of the type specified by the restricting qualifier. See “Implementing
Single-Table Mapping in a Model” (page 77) for more information on restricting qualifiers.

 ■ Parent is used to specify a parent entity for the current entity. This field is used to model
inheritance. See “Modeling Inheritance” (page 67) for more details on this topic.

 ■ Read Only specifies whether the data that’s represented by the entity can be altered by your
application. This does not lock objects at the database level but rather works at a higher level (in
the com.webobjects.eoaccess.EODatabaseContext object) so that if you try to save changes
to data that’s marked as read only, Enterprise Objects refuses the save and throws an exception.

Advanced Entity Inspector 61
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

 ■ Cache in Memoryspecifies that when one record in a table is fetched, the entire table is fetched
into memory. Caching an entity’s objects allows Enterprise Objects to evaluate queries in memory,
thereby avoiding round trips to the data source. This is most useful for read-only entities where
there is no danger of the cached data getting out of sync with the data in the data source.

 ■ Abstract lets you specify whether the entity is abstract. An abstract entity is one for which no
objects are ever instantiated. For example, in the Real Estate database, the User entity is abstract
and is never instantiated, whereas entities that inherit from it, such as Agent and Customer, are
concrete classes that are instantiated. Like the Parent field, this option is used when modeling
inheritance.

Shared Objects Inspector

The Shared Objects Inspector lets you configure a feature of Enterprise Objects called the shared
editing context. This is a special kind of editing context, a subclass of EOEditingContext:
com.webobjects.eocontrol.EOSharedEditingContext. The shared editing context is a mechanism
that allows EOEditingContext objects to share enterprise objects. Proper use of it can reduce redundant
data in your application and limit the number of fetches to the data store an application performs.

The Shared Objects Inspector provides a simple interface to define, on a per-entity basis, the objects
that are fetched into the shared editing context. By selecting the Share All Objects option, all rows of
data for a particular entity are fetched into the shared editing context. When you select this option,
a fetch specification is added to the entity called FetchAll. This fetch specification performs an
unqualified fetch on the entity in which it is defined. Figure 5-3 shows the Shared Objects Inspector
configured with this option.

62 Shared Objects Inspector
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

Figure 5-3 Shared Objects Inspector configured to perform an unqualified fetch

Using the Shared Objects Inspector, you can also share objects that are fetched with a fetch specification
defined in that entity. “Figure 6-4” shows the inspector configured to put only the objects fetched
with the SearchListings fetch specification into the shared editing context.

Shared Objects Inspector 63
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

Figure 5-4 Shared Objects Inspector configured to shared objects from a qualified fetch

Shared editing context objects are created when an EODatabaseContext object is instantiated. By
default, each application instance has a single instance of EODatabaseContext. See the API reference
documentation for EOSharedEditingContext for more information.

Stored Procedure Inspector

You can access the Stored Procedure Inspector by clicking the third button in the Entity Inspector.
You use the Stored Procedure Inspector to specify stored procedures that should be executed when
a particular database operation (such as insert or delete) occurs. In the field associated with the
database operation for which you want the stored procedure to execute, you enter the stored
procedure’s name. The stored procedures you specify must correlate to the stored procedures in your
model.

You can set up an EOModel so that Enterprise Objects automatically invokes a stored procedure for
these operations on an entity:

 ■ Insert to insert a new object into an entity

 ■ Delete to delete an object from an entity

 ■ Fetch All to fetch all objects in an entity

 ■ Fetch w/ PKto fetch the object in an entity with a particular primary key

 ■ Get PK to generate a new primary key for an entity

64 Stored Procedure Inspector
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

You associate a stored procedure with each of these operations by entering the stored procedure’s
name in the inspector, as shown in Figure 5-5.

Figure 5-5 Stored Procedure Inspector

The stored procedures you enter in the Stored Procedure Inspector must correspond to a stored
procedure in the model. If you created the model from an existing data source and chose the Ask
About Stored Procedures option in the wizard, stored procedures are already added to the model. If
this is not the case, however, you can add stored procedures to the model using the Add Stored
Procedure command from the Property menu.

When you add a stored procedure to a model, you assign it a name to use within Enterprise Objects
and you associate it with the stored procedure in the data source by supplying its external name.
Figure 5-6 shows two stored procedures in a model, DoForFetchAll, which is associated with the
DO_FOR_FETCH_ALL stored procedure in the data source and DoForInsert, which is associated
with the DO_FOR_INSERT stored procedure in the data source.

Figure 5-6 Map stored procedure in model to procedure in data source

Stored Procedure Inspector 65
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

Finally, some stored procedures take arguments that you can also define in EOModeler. To do this,
select a stored procedure in the tree view, which displays its arguments in the table. You can add
arguments to a stored procedure by choosing Add Argument from the Property menu. Figure 5-7
shows arguments in a stored procedure.

Figure 5-7 Stored procedure arguments

In order for Enterprise Objects to automatically invoke a stored procedure for these operations, you
must adhere to the requirements for each type of operation.

For each of the operations, if the stored procedure associated with an operation returns a value,
Enterprise Objects ignores the return value.

For Fetch All operations, the stored procedure must not take any arguments and it should return a
result set for all the objects in the corresponding entity. The rows in the result set must contain values
for all the columns Enterprise Objects would fetch if it were not using the stored procedure, and it
must return them in alphabetical order.

That is, the stored procedure should return values for primary keys, foreign keys used in class property
joins, class properties, and attributes used for locking. These values must be returned in alphabetical
order with regard to the attributes with which they are associated. For example, consider a Listing
entity that has the attributes listingID, bedrooms, and sellingPrice. A stored procedure that
fetches all the Listing objects should return the value for a listing’s number of bedrooms, then its
listingID, and then its selling price.

For Fetch w/ PK operations, the stored procedure must take an “in” argument for each of the entity’s
primary key attributes (most entities have a single primary key attribute). The argument names must
match the names of the entity’s primary key attributes. For example, a Listing entity has a single
primary key attribute named listingID, so the stored procedures argument as defined in the model
must also be listingID.

A Fetch w/ PK operation stored procedure should return a result set containing the row that matches
the primary key passed in by the argument. The row must be in the same form as rows returned by
the Fetch All operation.

For Insert operations, the stored procedure must take an “in” argument for each of the corresponding
entity’s attributes. The argument names must match the names of the corresponding EOAttribute
objects.

For Delete operations, the stored procedure must take an “in” argument for each of the entity’s primary
key attributes. The argument names must match the names of the primary key attributes as in a Fetch
w/ PK operation stored procedure.

For Get PK operations, the stored procedure must take an “out” argument for each of the entity’s
primary key attributes. The argument names must match the names of the primary key attributes as
in a Fetch w/ PK operation stored procedure.

Insert, Delete, and Get PK operations should not return a result set.

66 Stored Procedure Inspector
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 5

Working With Entities

One of the issues that may arise in designing your enterprise objects—whether you’re creating a
schema from scratch or working with an existing database schema—is the modeling of inheritance
relationships.

In object-oriented programming, it’s natural to think of data in terms of inheritance. A Customer
object, for example, naturally inherits certain characteristics from a Person object, such as name,
address, and phone number. In inheritance hierarchies, the parent object or superclass is usually
rather generic so that less generic subclasses of a related type can easily be added. So, in addition to
the Customer object, a Client object also naturally derives from a Person object.

While this kind of thinking is inherent in object-oriented design, relational databases have no explicit
support for inheritance. However, using Enterprise Objects, you can build data models that reflect
object hierarchies. That is, you can design database tables to support inheritance by also designing
enterprise objects that map to multiple tables or particular views of a database table.

This chapter discusses when to use inheritance, the different kinds of inheritance supported by
Enterprise Objects, and how to implement inheritance. It is divided into the following sections:

 ■ “Deciding to Use Inheritance” (page 67) discusses the issues involved when deciding to use
inheritance.

 ■ “Vertical Mapping” (page 69), “Horizontal Mapping” (page 74), and “Single-Table
Mapping” (page 76) discuss the three approaches to inheritance that are supported by the
Enterprise Object technology.

Deciding to Use Inheritance

Using inheritance adds another level of complexity to your data model, data source, and thus to your
application. While it has its advantages, you should use it only if you really need to. This section
provides information that will help you make that decision.

Suppose you’re designing an application that includes Employee and Customer objects. Employees
and customers share certain characteristics such as name and address, but they also have specialized
characteristics. For example, an employee has a salary and a manager whereas a customer has account
information and a sales contact.

Deciding to Use Inheritance 67
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

Based on these data requirements, you might design a class hierarchy that has a Person superclass
and Employee and Customer subclasses. As subclasses of Person, Employee and Customer inherit
Person’s attributes (name and address), but they also implement attributes and behaviors that are
specific to their classes, as illustrated in “Figure 7-1”.

Figure 6-1 A simple object hierarchy

firstName
lastName
birthday

firstName
lastName
birthday

current_order
previous_order

firstName
lastName
birthday
salary
project

Employee Customer

Person

Italic font represents attributes
inherited from superclass

In addition to designing a class hierarchy, you need to decide how to structure your data source so
that when objects of the classes are instantiated, the appropriate data is retrieved. These are some of
the issues you need to weigh in deciding on an approach:

 ■ Are fetches usually directed at the leaves or the root of the class hierarchy?

When a class hierarchy is mapped onto a relational database, data is accessed in two different
ways: by fetching just the leaves (for example, Employee or Customer) or by fetching at the root
(Person) to get instances of all levels of the class hierarchy (which includes Employees and
Customers).

 ■ How deep is the class hierarchy?

While deep class hierarchies can be a useful technique in object-oriented programming, you
should try to avoid them for enterprise objects. When you attempt to map a deep class hierarchy
onto a relational database, the result is likely to be poor performance and a database that’s difficult
to maintain.

 ■ What is the database storage cost for null attributes?

Some approaches to inheritance result in many null rows of data.

 ■ Will I need to modify my schema frequently?

Depending on the inheritance approach you take, changes to your database schema can result in
maintenance headaches for your enterprise object classes.

 ■ Will other tools be accessing the database?

68 Deciding to Use Inheritance
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

If other tools write to the data source to which an inheritance hierarchy maps, those tools may
not write data in a way that supports the inheritance hierarchy. If this is the case, you should
avoid using inheritance to prevent conflicts that may compromise the integrity of your data.

 ■ Can I ensure unique primary keys across inheritance hierarchies?

Within a given inheritance hierarchy, all the primary keys in all the tables must be unique. For
example, a primary key value of 36 can occur only in one table in an inheritance hierarchy. This
may be an issue if you want to apply an inheritance hierarchy to a collection of preexisting database
tables that do not have unique primary keys between them.

 ■ Do I need to use inheritance at all?

Don’t use inheritance if you’re not sure you need it. While a compelling feature, inheritance adds
complexity to your application and these costs may outweigh the benefits of using it. In short,
use inheritance only if you need to—don’t use it just because you want to.

In object-oriented programming, when a subclass inherits from a superclass, the instantiation of the
subclass implies that all the superclass’ data is available for use by the subclass. When you instantiate
objects of a subclass from database data, all the database tables that contain the data held in each class
(whether subclass or superclass) must be accessed so that the data can be retrieved and put in the
appropriate enterprise objects.

There are different approaches to storing the data in databases for entities that are a part of an
inheritance hierarchy. The three approaches supported by Enterprise Objects are

 ■ vertical mapping

 ■ horizontal mapping

 ■ single-table mapping

These approaches, along with the advantages and disadvantages of each, are discussed in the following
sections. None of them represents a perfect solution—which one is appropriate depends on the needs
of your application. Also keep in mind that you can mix inheritance strategies within a model.

Vertical Mapping

In this approach, each class is associated with a separate table. There is a Person table, an Employee
table, and a Customer table. Each table contains only the attributes defined by that class.

Vertical Mapping 69
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

Figure 6-2 Vertical mapping

id

project

salary
manager

EMPLOYEE

id
 current_order
 previous_order

CUSTOMER

id
 last_name
 first_name

 birthday

PERSON

Employee Customer

Person

This method of storage directly reflects the class hierarchy. If an object of the Employee class is
retrieved, data for the Employee’s Person attributes must be fetched along with Employee data. The
relationship between Employee and Person is resolved through a join to give Employee access to its
Person data. This is also the case for Customer. Vertical mapping requires a restricting qualifier if
you want to fetch records from a parent entity (Person in this example).

Implementing Vertical Mapping in a Model

Assuming that the entities for each of the participating tables do not yet exist, follow these steps to
easily create subentities from a parent entity:

1. Select the entity you want to be the parent entity (the superclass).

70 Vertical Mapping
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

2. To create a subentity of the parent entity, choose Create Subclass from the Property menu while
the parent entity is selected. Provide a class name and table name for the subentity. In this example,
two subentities are added to the model, Employee and Customer, which correspond to two tables
you’ll create in the database called EMPLOYEE and CUSTOMER, respectively. The attributes a
subentity inherits from its parent are displayed in italics, as shown in Figure 6-3.

Figure 6-3 Inherited attributes appear in italics

3. In the Advanced Entity Inspector, mark the parent entity as abstract if you won’t ever instantiate
Person objects, as shown in Figure 6-4.

If you need to instantiate the parent entity (Person objects), however, don’t mark the parent entity
as abstract. If you want to instantiate objects of the parent entity, you also need to assign a
restricting qualifier to it. You need to assign a restricting qualifier to any entity in a vertical
inheritance hierarchy that is not abstract and that has subentities (leaf nodes).

Vertical Mapping 71
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

This is necessary so you can fetch objects of the parent type without also fetching the characteristics
of the parent’s subentities. That is, when fetching Person objects, you don’t also want to fetch
attributes in Person’s subclasses, Employee and Customer. You do this by assigning a restricting
qualifier to the Person entity. See “Implementing a Restricting Qualifier” (page 78) to learn how
to do this.

Figure 6-4 Mark parent entities as abstract if they won’t ever be instantiated

Assuming that the entities for each of the participating tables already exist, do the following to
implement vertical mapping in an EOModel:

72 Vertical Mapping
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

1. Create a to-one relationship from each of the child entities (Employee and Customer) to the parent
entity (Person) joining on the primary keys. Set the relationships so they are not class properties.
Refer to Figure 6-5 for clarity.

Figure 6-5 To-one relationships to parent entity shown in inspector

2. Flatten the Person parent attributes into each child entity (Employee and Customer) and set the
flattened attributes as class properties if they are class properties in the Person entity. Do not
flatten the primary key. See “Flattening an Attribute” (page 45) to learn how to flatten an attribute.

If you created the child entities by choosing Create Subclass from the Property menu, you now
need to delete the attributes that are inherited from the parent entity. This is necessary to avoid
redundancy since the attributes you just flattened reflect the same attributes as the inherited
attributes do.

Figure 6-6 shows the result of flattening Person’s attributes into the Employee entity. The flattened
attributes appear in bold typeface in the table view.

Figure 6-6 Flattened attributes in table view

Vertical Mapping 73
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

3. Flatten the Person parent entity’s relationships into each child entity (Employee and Customer)
if it has any relationships, and set them as class properties if they are class properties in the Person
entity. In this example, the Person entity has no relationships, so there are none to flatten into its
child entities. In diagram view, the three entities should appear as in Figure 6-7.

Figure 6-7 Vertical inheritance hierarchy in diagram view

4. Set the parent entity for each child entity (Employee and Customer) to Person in the Advanced
Entity Inspector. This step isn’t necessary if you created the Employee and Customer entities
using the Create Subclass command from the Property menu.

5. Finally, add attributes to each child entity (Employee and Customer) that are specific to those
entities (such as manager and customerSince in this case).

6. Generate SQL for the Employee and Customer entities to create the EMPLOYEE and CUSTOMER
tables in the database.

Advantages of Vertical Mapping

With vertical mapping, a subclass can be added at any time without modifying the Person table.
Existing subclasses can also be modified without affecting the other classes in the inheritance hierarchy.
The primary virtue of this approach is its clean, “normalized” design.

Disadvantages of Vertical Mapping

Vertical mapping is the least efficient of all the approaches. Every layer of the class hierarchy requires
a join table to resolve the relationships. For example, if you want to perform a deep fetch from Person,
three fetches are performed: a fetch from Employee (with a join to Person), a fetch from Customer
(with a join to Person), and a fetch from Person to retrieve all the Person attributes. If Person is an
abstract superclass for which no objects are ever instantiated, the last fetch is not performed.

Horizontal Mapping

In this approach, you have separate tables for Employee and Customer that each contain columns
for Person. The Employee and Customer tables contain not only their own attributes, but all of the
Person attributes as well. If instances of Person exist that are not classified as Employees or as

74 Horizontal Mapping
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

Customers, a third table would be required. In other words, with horizontal mapping, every concrete
class has a self-contained database table that includes all of the attributes necessary to instantiate
objects of the class.

Figure 6-8 Horizontal inheritance mapping

id
last_name
first_name
birthday

project

salary
manager

EMPLOYEE CUSTOMER

Employee Customer

Person

id
last_name
first_name
birthday

 current_order
 previous_order

This mapping technique entails the same fetching pattern as vertical mapping except that no joins
are performed. Horizontal mapping does not require restricting qualifiers.

Implementing Horizontal Mapping in a Model

Assuming that the entities for each of the participating tables do not yet exist, follow these steps to
easily create subentities from a parent entity:

1. Select the entity you want to be the parent entity (the superclass).

2. To create a subentity of the parent entity, chose Create Subclass from the Property menu while
the parent entity is selected. Provide a class name and table name for the subentity. Refer to
“Implementing Vertical Mapping in a Model” (page 70) for a more concrete example.

3. In the Advanced Entity Inspector, mark the parent entity as abstract if you won’t ever instantiate
Person objects, as shown in Figure 6-4 (page 72). Refer to “Implementing Vertical Mapping in a
Model” (page 70) for a more concrete example.

4. Add attributes to each child entity (Employee and Customer) that are specific to those entities
(such as manager and customerSince in this case).

5. Generate SQL for the Employee and Customer entities to create the EMPLOYEE and CUSTOMER
tables in the database.

Horizontal Mapping 75
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

Unlike vertical mapping, you don’t need to flatten any of Person’s attributes into Employee and
Customer since they already include all of its attributes.

Advantages of Horizontal Mapping

Similar to vertical mapping, a subclass can be added at any time without modifying other tables.
Existing subclasses can also be modified without affecting the other classes in the class hierarchy.

This approach works well for deep class hierarchies as long as the fetch occurs against the leaves of
the class hierarchy (Employee and Customer) rather than against the root (Person). In the case of a
deep fetch, horizontal mapping is more efficient than vertical mapping since no joins are performed.
It’s the most efficient mapping approach if you fetch instances of only one leaf subclass at a time.

Disadvantages of Horizontal Mapping

Problems may occur when attributes need to be added to the Person superclass. The number of tables
that need to be altered is equal to the number of subclasses—the more subclasses you have, the more
effort is required to maintain the superclass.

If, for example, you need to add an attribute called middleName to the Person class, you then need to
alter its subclasses, Employee and Customer. So if you have deep inheritance hierarchies or many
subclasses, this can be tedious. However, if table maintenance happens far less often than fetches,
this might be a viable approach for your application.

Single-Table Mapping

With single-table mapping, you put all of the data in one table that contains all superclass and subclass
attributes. Each row contains all of the columns for the superclass as well as for all of the subclasses.
The attributes that don’t apply for each object have null values. You fetch an Employee or Customer
by using a query that returns just objects of the specified type (the table includes a type column to
distinguish records of one type from the other).

76 Single-Table Mapping
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

Figure 6-9 Single-table inheritance mapping

id
 person_type
 last_name

PERSON

Employee Customer

Person

 first_name
salary

 manager
project

 current_order
 previous_order

 birthday

Implementing Single-Table Mapping in a Model

Assuming that the entities for each of the participating tables do not yet exist, follow these steps to
easily create subentities from a parent entity:

1. Select the entity you want to be the parent entity (the superclass).

2. Add an attribute to the parent entity called “type” of External Type int and of Internal Data Type
Integer. This serves to distinguish each row of data by type. Make this attribute a class property
so you can set its value when you insert new objects. Also make sure to add the corresponding
column in the database table.

3. To create a subentity of the parent entity, choose Create Subclass from the Property menu while
the parent entity is selected. Provide a class name and table name for the subentity. Refer to
“Implementing Vertical Mapping in a Model” (page 70) for a more concrete example.

4. In the Advanced Entity Inspector, mark the parent entity as abstract if you won’t ever instantiate
Person objects, as shown in Figure 6-4 (page 72).

Single-Table Mapping 77
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

5. In the Advanced Entity Inspector, assign a restricting qualifier to the Employee entity that
distinguishes its rows from the rows of other entities. Similarly, assign a restricting qualifier to
the Customer entity. In this example, you can use type = 2 for Customer and type = 9 for
Employee. (In “Implementing a Restricting Qualifier” (page 78) you’ll learn why those two
integers are used in this example.

Figure 6-10 Assign a restricting qualifier

Unlike vertical mapping, you don’t need to flatten any of Person’s attributes into Employee and
Customer since these entities already have all of Person’s attributes. Each subentity maps to the same
table and contains attributes only for the properties that are relevant for that class.

When multiple entities are mapped to a single database table, you must set a restricting qualifier on
each entity to distinguish its rows from the rows of other entities. A restricting qualifier maps an
entity to a subset of rows in a table. This means that this qualifier is always used when fetches are
performed on the entity, as well as any other qualifiers used during the fetch.

The syntax and semantics for restricting qualifiers are the same as for the qualifiers you build in
EOModeler. You can use the qualifier builder feature of the fetch specification builder to generate
well-formed qualifiers. See “Building a Qualifier” (page 82).

Implementing a Restricting Qualifier

Finally, for the restricting qualifier to do any good, you need to provide a value for the type attribute
you added in step 2 for each object you insert (that is, for each record you add to the table). The
restricting qualifier uses the type attribute, so this example assumes that. (If you use an attribute with
a different name to identify rows of data in the table, make the necessary substitutions in this example.)

To provide a value for the type attribute for every new object that is inserted in an inheritance
hierarchy, you need to:

 ■ define constants for each type

 ■ override awakeFromInsertion in a parent enterprise object class

 ■ set the type in awakeFromInsertion

 ■ return a type in each enterprise object subclass

78 Single-Table Mapping
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

Consider the Person enterprise object parent class. It is an abstract class that has two concrete subclasses,
Employee and Customer. You need to provide constants in the Person class to identify these two
subclasses:

public static final Integer CustomerUserType = new Integer(2);
public static final Integer EmployeeUserType = new Integer(9);

Then, you need to override awakeFromInsertion in the Person subclasses to set the type for each
inserted record. An example appears in Listing 6-1.

Listing 6-1 Set type in awakeFromInsertion

public void awakeFromInsertion (EOEditingContext editingContext) {
super.awakeFromInsertion(context);
setType(_userType());

}

A subclass (such as Employee or Customer in this example) must implement the _userType method
to return an Integer representing the object’s type:

Integer _userType() {
return CustomerUserType;

}

Listing 6-1 assumes that the entity corresponding to the enterprise object class in which the method
awakeFromInsertion exists includes an attribute named “type” that is a class property. So whenever
a new enterprise object is created, its type attribute is automatically set to the name of the class.

So if the name of the class is Customer, the type attribute is set to the integer 2 as soon as the object
is created. Then, when a fetch is performed on the Customer entity (which is performed on the Person
table since only one table exists in the database for the objects in this inheritance hierarchy), the
restricting qualifier helps to return only those records whose type is “Customer.”

See the WebObjects Examples (/Developer/Examples/JavaWebObjects/) for a real implementation
of this and the other types of inheritance.

Advantages of Single-Table Mapping

This approach is faster than the other two methods for deep fetches. Unlike vertical or horizontal
mapping, you can retrieve superclass objects with a single fetch, without performing joins. Adding
a subclass or modifying the superclass requires changes to just one table.

Disadvantages of Single-Table Mapping

Single-table mapping results in tables that have columns for all of the attributes of each entity in the
inheritance hierarchy. It also results in many null row values. While these aren’t really disadvantages,
they may conflict with some database design philosophies.

Single-Table Mapping 79
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

80 Single-Table Mapping
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 6

Modeling Inheritance

After you create and configure entities in EOModeler, you can also use it to build queries on those
entities called fetch specifications. A fetch specification (a
com.webobjects.eocontrol.EOFetchSpecification object) is the object Enterprise Objects uses
to get data from a data source.

Each fetch specification can contain a qualifier, which fetches only those rows that meet the criteria
in the qualifier. A fetch specification allows you to specify a sort ordering to sort the rows of data
returned. A fetch specification can also have other characteristics, as discussed in this chapter.

This chapter is organized in the following sections:

 ■ “Creating a Fetch Specification” (page 81) describes how to use EOModeler to add a fetch
specification to an entity.

 ■ “Assigning a Sort Ordering” (page 85) describes how to assign a sort ordering to a fetch
specification.

 ■ “Prefetching” (page 86) describes what prefetching is and how to configure it.

 ■ “Configuring Raw Row Fetching” (page 86) describes what raw row fetching is, how to use it,
and when to use it.

 ■ “Other Fetch Specification Options” (page 87) describes the other characteristics of fetch
specifications that you can set in EOModeler, such as fetch limit and deep fetching.

 ■ “Using Named Fetch Specifications” (page 88) tells you how to invoke a fetch specification you
build in EOModeler from business logic classes.

Creating a Fetch Specification

Although you can create fetch specifications programmatically, it’s easier and less error-prone to
create and configure them in EOModeler. To create a fetch specification in EOModeler:

1. Select the entity with which the fetch specification is associated.

A fetch specification is related to a single entity, so all the fields used in a particular fetch
specification are relative to the entity to which it belongs.

2. Choose Add Fetch Specification from the Property menu.

Creating a Fetch Specification 81
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

3. Type a name for the fetch specification in the Fetch Specification Name field and press Return.

Figure 7-1 A sample fetch specification

Fetch specification builder

Figure 7-1 shows a fetch specification called SearchListing in an entity called Listing. There are six
panes in the fetch specification builder, which you can use to configure a fetch specification. They are
each described in the following sections.

Building a Qualifier

A qualifier (a concrete instance of a com.webobjects.eocontrol.EOQualifier subclass) restricts
the rows of data that are fetched with a fetch specification object. For example, in a real estate
application, you may want to retrieve the records of homes that are priced under $500,000. To build
the qualifier for this query in EOModeler:

1. Using the Real Estate model in the WebObjects examples folder, add a fetch specification to the
Listing entity.

82 Creating a Fetch Specification
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

2. In the Qualifier pane, click in the text field below the list of attributes, then select the askingPrice
attribute, and type < 500000 after it, as shown in Figure 7-2.

Figure 7-2 Static qualifier

This fetch specification returns only those listings whose asking price is under $500,000. Although
you may have the need to build a static qualifier like this one, you’ll most often want to use qualifier
variables to supply dynamic values to qualifiers, such as $350,000 or $700,000 in this example. This
is described in “Using Qualifier Variables” (page 84).

Creating Compound Qualifiers

You can also use the qualifier builder to create compound qualifiers made up of multiple expressions.
For example, you may want to build a qualifier that restricts a query on home listings to homes whose
asking price is less than $500,000 but greater than $350,000.

To create a compound qualifier from the qualifier created in “Building a Qualifier” (page 82), select
the expression askingPrice < 500000 and click the And button. Then add a second expression by
again selecting the askingPrice attribute from the attribute list and completing the expression with
> 350000, as shown in Figure 7-3.

Creating a Fetch Specification 83
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

Figure 7-3 A compound qualifier

Individual qualifiers

Complete qualifier

As you build up a complex query, the text field at the bottom of the Qualifier pane updates to include
the full text of the compound qualifier. Instead of building up expressions one by one with the And,
Or, and Not buttons, you can type directly into this text field. The qualifier builder parses this string
and displays the individual expressions.

Using Qualifier Variables

You can specify static criteria for a fetch specification’s qualifier, as is done in “Building a
Qualifier” (page 82) and in “Creating Compound Qualifiers” (page 83). However, such a qualifier
is of limited use. More commonly, you want to specify the form of a qualifier and let users supply
specific values when they run the application. You can do this with qualifier variables.

You specify a qualifier variable using the dollar sign character ($), as in the following:

askingPrice < $maxPrice

You can build this qualifier in EOModeler as specified in the previous sections and then bind its
qualifier variables to your application’s user interface. You do this by dragging a fetch specification
into either WebObjects Builder or Interface Builder and then binding user interface elements to keys
in the display group that correspond to the fetch specification’s variables.

Figure 7-4 shows the queryBindings attribute of a display group that was added to a WOComponent.
The queryBindings attribute includes bindings for the attributes that are the keys of qualifiers in the
fetch specification to which the display group is associated. You bind values in the user interface to
these keys by making a connection between the keys and certain dynamic elements.

84 Creating a Fetch Specification
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

Figure 7-4 Fetch specification bindings in WebObjects Builder

You can also bind qualifier variables to values in your application programmatically, as described in
“Using Named Fetch Specifications” (page 88).

Assigning a Sort Ordering

It’s common to want a fetch specification to return a sorted array of objects. You can assign a sort
ordering to a fetch specification in the Sort Ordering pane of the fetch specification builder.

Simply choose an attribute on which to sort and click Add. The order in which you add attributes
specifies the weight to assign to them. Figure 7-5 shows a sort ordering that sorts first on whether the
listing is sold and second on the number of bedrooms.

Figure 7-5 Sort ordering

You can also specify an ascending or descending order to sort on for each attribute and whether to
perform case-sensitive or case-insensitive comparison. Figure 7-5 specifies an ascending order for the
isSold attribute and a descending order for the bedrooms attribute.

Assigning a Sort Ordering 85
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

Prefetching

Among the numerous options you can use to tune a fetch specification’s behavior is prefetching. In
the Prefetching pane of the fetch specification builder, you identify relationships that should be fetched
along with the objects specified by the fetch specification. For example, when fetching Listing objects,
you can prefetch associated listingFeatures and suggestedCustomers relationships. This tells
Enterprise Objects to retrieve a Listing’s listedFeatures and suggestedCustomers relationships
along with the Listing itself, as opposed to creating faults for the objects in those relationships.

Although prefetching increases the initial fetch cost, it can improve overall performance by reducing
the number of round trips made to the data source.

To specify a relationship to prefetch, in the Prefetching pane of the fetch specification builder, select
the relationship you want to prefetch and click Add, as shown in Figure 7-6.

Figure 7-6 Configure prefetching

Configuring Raw Row Fetching

When you perform a fetch in an Enterprise Objects application, the information from the database is
fetched and stored in a graph of enterprise objects. This object graph provides many advantages, but
it can be large and complex.

If you’re creating a simple application, you may not need all the benefits of enterprise objects and the
object graph. For example, an application that simply displays information from a database without
ever performing database updates and without ever traversing relationships might be just as well
served by fetching the information into a set of dictionaries rather than a set of enterprise objects.

You can do this in Enterprise Objects by using raw row fetching. In raw row fetching, each row from
the database is fetched into an NSDictionary object.

When you use raw row fetching, you lose some important features:

 ■ The objects in the dictionary are not uniqued.

86 Prefetching
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

 ■ The objects in the dictionary aren’t tracked by an editing context.

 ■ You can’t access to-many relationship information. (However, you can use key paths to access
to-one relationships).

And, if you need an enterprise object at some point in your application, you can easily construct one
from a raw row dictionary.

You can configure raw row fetching in the Raw Fetch pane of the fetch specification builder. In this
pane, you can choose to fetch all or some of the attributes of a particular entity as raw rows.

Other Fetch Specification Options

The Options pane of the fetch specification builder lets you configure other aspects of a fetch
specification. These other aspects are usually used for performance tuning. These are the options:

 ■ Fetch Limit lets you specify the maximum number of objects to fetch for a particular fetch
specification. You enter the maximum number in the Max Rows text field in the Options pane.
The default limit is zero, indicating that there is no fetch limit.

Use the “Prompt on limit” option to specify how Enterprise Objects should behave when the
fetch limit is reached. If the “Prompt on limit” option is selected, the user is prompted about
whether to continue fetching after the maximum has been reached. If the box isn’t checked,
Enterprise Objects simply stops fetching when it reaches the limit.

 ■ Perform deep inheritance fetch specifies whether to fetch deeply or not. This is used with
inheritance hierarchies when fetching for an entity with subentities. A deep fetch produces all
instances of the root entity and its subentities while a shallow fetch produces only instances of
the entity in the fetch specification. See “Modeling Inheritance” (page 67) for more details on
inheritance.

 ■ Fetch distinct rows specifies whether to return distinct results or not. Normally if a record or
object is selected several times, such as when forming a join, it appears several times in the fetch
results. A fetch specification that fetches distinct rows filters out duplicates so that each record
or object appears exactly once in the result set.

 ■ Lock all fetched objects specifies that a fetch specification locks fetched objects, which means
that each row in the data source is locked when it is read. This is one way to implement pessimistic
locking in your application.

 ■ Refresh refetched objects specifies that existing objects affected by the fetch specification should
be overwritten with newly fetched values when they’ve been updated or changed. With fetch
specifications that don’t refresh, existing objects aren’t updated when their data is refetched (the
fetched data is simply discarded).

 ■ Require all variable bindings specifies whether a missing value for a qualifier variable is ignored
or whether Enterprise Objects requires that each qualifier variable have a value assigned to it. If
this option is selected, an exception is thrown during variable substitution if a missing value is
present. If this option isn’t selected, any qualifier expressions for which there are no variable
bindings are pruned from the qualifier. See “Using Qualifier Variables” (page 84) for related
information.

Other Fetch Specification Options 87
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

Using Named Fetch Specifications

Fetch specifications you build in EOModeler are referred to as named fetch specifications. To use a
named fetch specification requires that you get hold of the model object in which the fetch specification
exists. The code in Listing 7-1 retrieves a fetch specification called “MyFetch” in an entity named
“Listing” by looking for it in all the models in the application’s default model group.

Listing 7-1 Get a fetch specification programmatically

EOModelGroup modelGroup = EOModelGroup.defaultGroup();
EOFetchSpecification fs = modelGroup.fetchSpecificationNamed("MyFetch",
"Listing");

If the fetch specification has qualifier variables, you can bind them to a dictionary of values in the
application using the code in Listing 7-2.

Listing 7-2 Bind qualifier variables

fs = fs.fetchSpecificationWithQualifierBindings(dictionary);

In Listing 7-2, the variable bindings is an NSDictionary object of key-value pairs. So if you have three
qualifier variables in the fetch specification called $askingPrice, $bedrooms, and $bathrooms, the
dictionary object would look like Table 7-1.

Table 7-1 Bindings dictionary

ValueKey

500000askingPrice

4bedrooms

3bathrooms

If you define a qualifier like this:

(askingPrice < $askingPrice) and (bedrooms = $bedrooms) and (bathrooms =
$bathrooms)

then the qualifier variables are replaced by 500000 (askingPrice), 4 (bedrooms), and 3 (bathrooms).

You can construct the dictionary in Table 7-1 with this code:

NSMutableDictionary dictionary = new NSMutableDictionary();
dictionary.takeValueForKey("500000", "askingPrice");
dictionary.takeValueForKey("4", "bedrooms");
dictionary.takeValueForKey("3", "bathrooms");

The complete code listing for this example appears is:

EOModelGroup modelGroup = EOModelGroup.defaultGroup();
EOFetchSpecification fs = modelGroup.fetchSpecificationNamed("MyFetch",
"Listing");
fs = fs.fetchSpecificationWithQualifierBindings(dictionary);

88 Using Named Fetch Specifications
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

NSMutableDictionary dictionary = new NSMutableDictionary();
dictionary.takeValueForKey("500000", "askingPrice");
dictionary.takeValueForKey("4", "bedrooms");
dictionary.takeValueForKey("3", "bathrooms");

Using Named Fetch Specifications 89
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

90 Using Named Fetch Specifications
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 7

Working With Fetch Specifications

This table describes the changes to EOModeler User Guide.

NotesDate

Changed title of book from "WebObjects EOModeler User Guide."2006-05-23

Changed the title from "Using EOModeler."2005-08-11

First version of this document.2002-11-01

91
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

92
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

adaptor, database A mechanism that connects
your application to a particular database server.
For each type of server you use, you need a
separate adaptor. WebObjects provides an adaptor
for databases conforming to JDBC.

adaptor, WebObjects A process (or a part of one)
that connects WebObjects applications to an HTTP
server.

application object An object (of the
WOApplication class) that represents a single
instance of a WebObjects application. The
application object’s main role is to coordinate the
handling of HTTP requests, but it can also
maintain application-wide state information.

attribute In Entity-Relationship modeling, an
identifiable characteristic of an entity. For
example, lastName can be an attribute of an
Employee entity. An attribute typically
corresponds to a column in a database table. See
also “entity” (page 94); “relationship” (page 96).

business logic The rules associated with the data
in a database that typically encode business
policies. An example is automatically adding late
fees for overdue items.

CGI (Common Gateway Interface) A standard
for interfacing external applications with
information servers, such as HTTP or Web servers.

class In object-oriented languages such as Java,
a prototype for a particular kind of object. A class
definition declares instance variables and defines
methods for all members of the class. Objects that
have the same types of instance variables and have
access to the same methods belong to the same
class.

class property An instance variable in an
enterprise object that meets two criteria: It’s based
on an attribute in your model, and it can be
fetched from the database. “Class property” can
refer either to an attribute or to a relationship.

column In a relational database, the dimension
of a table that holds values for a particular
attribute. For example, a table that contains
employee records might have a column titled
“LAST_NAME” that contains the values for each
employee’s last name. See also “attribute” (page
93).

component An object (of the WOComponent
class) that represents a Web page or a reusable
portion of one.

data modeling The process of building a data
model to describe the mapping between a
relational database schema and an object model.

database server A data storage and retrieval
system. Database servers typically run on a
dedicated computer and are accessed by client
applications over a network.

deep fetch An option available to fetch
specifications that causes database fetches to occur
against the root table and any leaf tables.
Applicable to inheritance hierarchies.

derived attribute An attribute in a data model
that does not directly correspond to a column in
a database. Derived attributes are usually
calculated from a SQL expression.

Direct to Java Client A WebObjects development
approach that can generate a Java Client
application from a model.

93
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

Glossary

Direct to Java Client Assistant A tool used to
customize a Direct to Java Client application.

Direct to Web A WebObjects development
approach that can generate an HTML-based Web
application from a model.

Direct to Web Assistant A tool used to customize
a Direct to Web application.

Direct to Web template A component used in
Direct to Web applications that can generate a
Web page for a particular task (for example, a list
page) for any entity.

dynamic element A dynamic version of an HTML
element. WebObjects includes a list of dynamic
elements with which you can build components.

enterprise object A Java object that conforms to
the key-value coding protocol and whose
properties (instance data) can map to stored data.
An enterprise object brings together stored data
with methods for operating on that data. It allows
this data to persist in memory. See also “key-value
coding” (page 95); “property” (page 95).

entity In Entity-Relationship modeling, a
distinguishable object about which data is kept.
An entity typically corresponds to a table in a
relational database; an entity’s attributes, in turn,
correspond to a table’s columns. An entity is used
to map a relational database table to a Java class.
See also attribute; table.

Entity-Relationship modeling A discipline for
examining and representing the components and
interrelationships in a database system. Also
known as ER modeling, this discipline factors a
database system into entities, attributes, and
relationships.

EOModeler A tool used to create and edit models.

faulting A mechanism used by Enterprise Objects
to increase performance whereby destination
objects of relationships are not fetched until they
are explicitly accessed.

fetch specification In Enterprise Objects
applications, used to retrieve data from the
database server into the client application, usually
into enterprise objects.

flattened attribute An attribute that is added
from one entity to another by traversing a
relationship.

foreign key An attribute in an entity that gives
it access to rows in another entity. This attribute
must be the primary key of the related entity. For
example, an Employee entity can contain the
foreign key deptID, which matches the primary
key in the entity Department. You can then use
deptID as the source attribute in Employee and
as the destination attribute in Department to form
a relationship between the entities. See also
“primary key” (page 95); “relationship” (page
96).

inheritance In object-oriented programming, the
ability of a superclass to pass its characteristics
(methods and instance variables) on to its
subclasses, allowing subclasses to reuse these
characteristics.

instance In object-oriented languages such as
Java, an object that belongs to (is a member of) a
particular class. Instances are created at runtime
according to the specification in the class
definition.

Interface Builder A tool used to create and edit
graphical user interfaces like those used in Java
Client applications.

inverse relationship A relationship that goes in
the reverse direction of another relationship. Also
known as a back relationship.

Java Browser A tool used to peruse Java APIs
and class hierarchies.

Java Client A WebObjects development approach
that allows you to create graphical user interface
applications that run on the user’s computer and
communicate with a WebObjects server.

Java Foundation Classes A set of graphical user
interface components and services written in Java.
The component set is known as Swing.

JDBC An interface between Java platforms and
databases.

94
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

G L O S S A R Y

join An operation that provides access to data
from two tables at the same time, based on values
contained in related columns.

key An arbitrary value (usually a string) used to
locate a datum in a data structure such as a
dictionary.

key-value coding The mechanism that allows the
properties in enterprise objects to be accessed by
name (that is, as key-value pairs) by other parts
of the application.

locking A mechanism to ensure that data isn’t
modified by more than one user at a time and that
data isn’t read as it is being modified.

look In Direct to Web applications, one of three
user interface styles. The looks differ in both
layout and appearance.

many-to-many relationship A relationship in
which each record in the source entity may
correspond to more than one record in the
destination entity, and each record in the
destination may correspond to more than one
record in the source. For example, an employee
can work on many projects, and a project can be
staffed by many employees. In Enterprise Objects,
a many-to-many relationship is composed of
multiple relationships. See also
“relationship” (page 96).

method In object-oriented programming, a
procedure that can be executed by an object.

model An object (of the EOModel class) that
defines, in Entity-Relationship terms, the mapping
between enterprise object classes and the database
schema. This definition is typically stored in a file
created with the EOModeler application. A model
also includes the information needed to connect
to a particular database server.

Monitor A tool used to configure and maintain
deployed WebObjects applications capable of
handling multiple applications, instances, and
application servers at the same time.

object A programming unit that groups together
a data structure (instance variables) and the
operations (methods) that can use or affect that
data. Objects are the principal building blocks of
object-oriented programs.

primary key An attribute in an entity that
uniquely identifies rows of that entity. For
example, the Employee entity can contain an
empID attribute that uniquely identifies each
employee.

Project Builder A tool used to manage the
development of a WebObjects application or
framework.

prefetching A feature in Enterprise Object that
allows you to suppress fault creation for an
entity’s relationships. Instead of creating faults,
the relationship data is fetched when the entity is
first fetched. See also “faulting” (page 94).

property In Entity-Relationship modeling, an
attribute or relationship. See also “attribute” (page
93); “relationship” (page 96).

prototype attribute An special type of attribute
available in EOModeler to provide a template for
creating attributes.

raw row fetching An possible option in a fetch
specification that retrieves database rows without
forming enterprise objects from those rows.

record The set of values that describes a single
instance of an entity; in a relational database, a
record is equivalent to a row.

referential integrity The rules governing the
consistency of relationships.

reflexive relationship A relationship within the
same entity; the relationship’s source join attribute
and destination join attribute are in the same
entity.

relational database A database designed
according to the relational model, which uses the
discipline of Entity-Relationship modeling and
the data design standards called normal forms.

95
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

G L O S S A R Y

relationship A link between two entities that’s
based on attributes of the entities. For example,
the Department and Employee entities can have
a relationship based on the deptID attribute as a
foreign key in Employee, and as the primary key
in Department (note that although the join
attribute deptID is the same for the source and
destination entities in this example, it doesn’t have
to be). This relationship would make it possible
to find the employees for a given department. See
also “foreign key” (page 94); “primary key” (page
95); “many-to-many relationship” (page 95);
“to-many relationship” (page 96); “to-one
relationship” (page 96).

relationship key A key (an attribute) on which a
relationship joins.

reusable component A component that can be
nested within other components and acts like a
dynamic element. Reusable components allow
you to extend WebObject’s selection of
dynamically generated HTML elements.

request A message conforming to the Hypertext
Transfer Protocol (HTTP) sent from the user’s Web
browser to a Web server that asks for a resource
like a Web page. See also “response” (page 96).

request-response loop The main loop of a
WebObjects application that receives a request,
responds to it, and awaits the next request.

response A message conforming to the Hypertext
Transfer Protocol (HTTP) sent from the Web
server to the user’s Web browser that contains the
resource specified by the corresponding request.
The response is typically a Web page. See also
“request” (page 96).

row In a relational database, the dimension of a
table that groups attributes into records.

rule In the Direct to Web and Direct to Java Client
approaches, a specification used to customize the
user interfaces of applications developed with
these approaches.

Rule Editor A tool used to edit the rules in Direct
to Web and Direct to Java Client applications.

session A period during which access to a
WebObjects application and its resources is
granted to a particular client (typically a browser).
Also an object (of the WOSession class)
representing a session.

snapshotting Part of the Enterprise Objects
optimistic locking mechanism in which snapshots
of database rows in memory are compared with
the data in the database.

table A two-dimensional set of values
corresponding to an entity. The columns of a table
represent characteristics of the entity and the rows
represent instances of the entity.

target A blueprint for building a product from
specified files in your project. It consists of a list
of the necessary files and specifications on how
to build them. Some common types of targets
build frameworks, libraries, applications, and
command-line tools.

template In a WebObjects component, a file
containing HTML that specifies the overall
appearance of a Web page generated from the
component.

to-many relationship A relationship in which
each source record has zero to many
corresponding destination records. For example,
a department has many employees.

to-one relationship A relationship in which each
source record has one corresponding destination
record. For example, each employee has one job
title.

transaction A set of actions that is treated as a
single operation that either succeeds completely
(COMMIT) or fails completely (ROLLBACK).

uniquing A mechanism to ensure that, within a
given context, only one object is associated with
each row in the database.

validation A mechanism to ensure that
user-entered data lies within specified limits.

WebObjects Builder A tool used to graphically
edit WebObjects components.

96
Legacy Document | 2006-05-23 | © 2002, 2006 Apple Computer, Inc. All Rights Reserved.

G L O S S A R Y

	EOModeler User Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Data Modeling and EOModeler
	Why Model Your Data?
	When to Model Data
	EOModeler Features
	Entity-Relationship Modeling Fundamentals
	Entities and Attributes
	Naming Conventions
	Data Types
	Relationships
	ER Modeling in Enterprise Objects

	Creating a Model From an Existing Data Source
	Selecting an Adaptor
	Choosing What to Include
	Assign Primary Keys to All Entities
	Ask About Relationships
	Ask About Stored Procedures
	Use Custom Enterprise Objects

	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Owns Destination
	Delete Rule

	Choosing Stored Procedures
	Save the Model

	What a New Model Includes
	Checking for Consistency

	Using EOModeler
	Editing Views
	The Tree View
	Table Mode
	Diagram View
	Browser Mode

	Working With Attributes
	Attribute Characteristics
	More About Attribute Characteristics
	Allows Null
	Class Property
	Client-Side Class Property
	Definition (Derived Attributes)
	Locking
	Primary Key
	Read Format and Write Format
	Value Type

	Prototype Attributes
	Creating Prototype Attributes
	Assigning a Prototype to an Attribute

	Flattened Attributes
	When Should You Flatten Attributes?
	Flattening an Attribute

	Working With Relationships
	About Relationships
	Directionality
	Cardinality
	Relationship Keys
	Reflexive Relationships
	Owns Destination and Propagate Primary Key

	Creating Relationships
	Forming Relationships in the Diagram View
	Forming Relationships in the Inspector
	Forming Relationships Across Models and Data Sources

	Tips for Specifying Relationships
	Adding Referential Integrity Rules
	Optionality
	Delete Rule

	Flattened Relationships
	When Should You Flatten Relationships?
	Flattening a Relationship

	Modeling Many-to-Many Relationships

	Working With Entities
	Entity Characteristics
	Advanced Entity Inspector
	Shared Objects Inspector
	Stored Procedure Inspector

	Modeling Inheritance
	Deciding to Use Inheritance
	Vertical Mapping
	Implementing Vertical Mapping in a Model
	Advantages of Vertical Mapping
	Disadvantages of Vertical Mapping

	Horizontal Mapping
	Implementing Horizontal Mapping in a Model
	Advantages of Horizontal Mapping
	Disadvantages of Horizontal Mapping

	Single-Table Mapping
	Implementing Single-Table Mapping in a Model
	Implementing a Restricting Qualifier
	Advantages of Single-Table Mapping
	Disadvantages of Single-Table Mapping

	Working With Fetch Specifications
	Creating a Fetch Specification
	Building a Qualifier
	Creating Compound Qualifiers
	Using Qualifier Variables

	Assigning a Sort Ordering
	Prefetching
	Configuring Raw Row Fetching
	Other Fetch Specification Options
	Using Named Fetch Specifications

	Revision History
	Glossary

