OPENSTEP
SPECIFICATION

October 19, 1994

Copyright © 1994 NeXT Compuiter, Inc. All rights reserved.
This document sets forth the OpenStep application programming interface (API).

You may down-load one copy of this specification aslong asit isfor purposes of study only. We look
forward to licensing third parties to create original implementations of this API. No such licenseis
granted or implied by the publication of this specification. If you would like information on obtaining
such alicense, please contact NeXT at OpenStep@NeXT.COM.

OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo, Application Kit, Foundation
Kit, Interface Builder, and Workspace M anager aretrademarks of NeXT Compuiter, Inc. PostScript and
Display PostScript are registered trademarks of Adobe Systems, Incorporated. UNIX is aregistered
trademark in the United States and other countries, licensed exclusively through X/Open Company
Limited. PANTONE isaregistered trademark of Pantone, Inc. Unicode is atrademark of Unicode,
Inc. All other trademarks mentioned belong to their respective owners.

OpenStep Specification—10/19/94

Contents

Introduction

Chapter 1: Application Kit
Introduction

Classes

NSActionCell, p. 1-4
NSApplication, p. 1-6
NSBitmaplmageRep, p. 1-16
NSBox, p. 1-20

NSBrowser, p. 1-22
NSBrowserCell, p. 1-29
NSBundle Additions, p. 1-31
NSButton, p. 1-32
NSButtonCell, p. 1-35
NSCachedlmageRep, p. 1-38
NSCell, p. 1-39
NSClipView, p. 1-46
NSCoder Additions, p. 1-48
NSColor, p. 1-49
NSColorList, p. 1-57
NSColorPanel, p. 1-60
NSColorPicker, p. 1-63
NSColorWedll, p. 1-65
NSControl, p. 1-67
NSCStringText, p. 1-74
NSCursor, p. 1-85
NSCustomimageRep, p. 1-87

OpenStep Specification—10/19/94

NSDatalLink, p. 1-88
NSDatal inkManager, p. 1-91
NSDatalLinkPanel, p. 1-95
NSEPSImageRep, p. 1-97
NSEvent, p. 1-99

NSFont, p. 1-104
NSFontManager, p. 1-108
NSFontPandl, p. 1-112
NSForm, p. 1-114
NSFormCell, p. 1-116
NSHelpPandl, p. 1-118
NSImage, p. 1-122
NSImageRep, p. 1-129
NSMatrix, p. 1-133
NSMenu, p. 1-141
NSMenuCell, p. 1-143
NSOpenPandl, p. 1-144
NSPagel ayout, p. 1-146
NSPandl, p. 1-148
NSPasteboard, p. 1-150
NSPopUpButton, p. 1-154
NSPrinter, p. 1-157
NSPrintinfo, p. 1-164
NSPrintOperation, p. 1-167
NSPrintPanel, p. 1-171
NSResponder, p. 1-173
NSSavePanel, p. 1-176
NSScreen, p. 1-179
NSScroller, p. 1-181
NSScrollView, p. 1-184
NSSelection, p. 1-187
NSSlider, p. 1-190
NSSliderCell, p. 1-192
NSSpellChecker, p. 1-195
NSSpellServer, p. 1-199
NSSplitView, p. 1-203
NSText, p. 1-205
NSTextField, p. 1-214
NSTextFieldCell, p. 1-217
NSView, p. 1-218
NSWindow, p. 1-227
NSWorkspace, p. 1-240

OpenStep Specification—10/19/94

1-245 Protocols
NSChangeSpelling, p. 1-245
NSColorPickingCustom, p. 1-246
NSColorPickingDefault, p. 1-247
NSDraggingDestination, p. 1-250
NSDragginglnfo, p. 1-252
NSDraggingSource, p. 1-254
NSIgnoreMisspelledWords, p. 1-255
NSMenuA ctionResponder, p. 1-257
NSNibAwaking, p. 1-259
NSServicesRequests, p. 1-261

1-262 Application Kit Functions
Rectangle Drawing Functions, p. 1-262
Color Functions, p. 1-263
Text Functions, p. 1-264
Array Allocation Functions for Use by the NSText Class, p. 1-266
Imaging Functions, p. 1-266
Attention Panel Functions, p. 1-267
Services Menu Functions, p. 1-268
Other Application Kit Functions, p. 1-269

1-271 Types and Constants
Application, p. 1-271
Box, p. 1-271
Buttons, p. 1-272
Cedllsand Button Cells, p. 1-272
Color, p. 1-274
DatalLink, p. 1-274
Drag Operation, p. 1-275
Event Handling, p. 1-276
Exceptions, p. 1-278
Fonts, p. 1-280
Graphics, p. 1-281
Matrix, p. 1-283
Notifications, p. 1-283
Panel, p. 1-285
Page Layout, p. 1-286
Pasteboard, p. 1-286
Printing, p. 1-287
Save Panedl, p. 1-290
Scroller, p. 1-290
Text, p. 1-291

OpenStep Specification—10/19/94

View, p. 1-299
Window, p. 1-299
Workspace, p. 1-300

2-1 Chapter 2: Foundation Kit

2-1 Introduction

2-2 Classes
NSArchiver, p. 2-4
NSArray, p. 2-6

NSAssertionHandler, p. 2-10
NSAutoreleasePoal, p. 2-12
NSBTreeBlock, p. 2-16
NSBTreeCursor, p. 2-19
NSBundle, p. 2-22
NSByteStore, p. 2-26
NSByteStoreFile, p. 2-31
NSCaendarDate, p. 2-33
NSCharacterSet, p. 2-38
NSCoder, p. 2-41
NSConditionLock, p. 2-45
NSConnection, p. 2-47
NSCountedSet, p. 2-51
NSData, p. 2-53

NSDate, p. 2-57
NSDeserializer, p. 2-61
NSDictionary, p. 2-62
NSDistantObject, p. 2-66
NSEnumerator, p. 2-68
NSException, p. 2-69
NSInvocation, p. 2-74
NSLock, p. 2-76
NSMethodSignature, p. 2-77
NSMutableArray, p. 2-79
NSMutableCharacterSet, p. 2-82
NSMutableData, p. 2-84
NSMutableDictionary, p. 2-87
NSMutableSet, p. 2-89
NSMutableString, p. 2-91
NSNotification, p. 2-94
NSNotificationCenter, p. 2-96
NSNotificationQueue, p. 2-99

OpenStep Specification—10/19/94

NSNumber, p. 2-102
NSObject, p. 2-105
NSProcessinfo, p. 2-110
NSProxy, p. 2-112
NSRecursiveLock, p. 2-114
NSRunLoop, p. 2-115
NSScanner, p. 2-117
NSSerializer, p. 2-120
NSSet, p. 2-122

NSString, p. 2-125
NSThread, p. 2-136
NSTimer, p. 2-138
NSTimeZone, p. 140
NSTimeZoneDetail, p. 2-143
NSUnarchiver, p. 2-144
NSUserDefaults, p. 2-146
NSvalue, p. 152

2-155 Protocols
NSCoding, p. 2-155
NSCopying, p. 2-156
NSLocking, p. 2-157
NSMutableCopying, p. 2-158
NSObjCTypeSerializationCallBack, p. 2-159
NSObject, p. 2-162

2-165 Foundation Kit Functions
Memory Allocation Functions, p. 2-165
Object Allocation Functions, p. 2-167
Error-Handling Functions, p. 2-168
Geometric Functions, p. 2-170
Range Functions, p. 2-173
Hash Table Functions, p. 2-174
Map Table Functions, p. 2-176
Miscellaneous Functions, p. 2-179

2-181 Types and Constants
Exception Handling, p. 2-181
Geometry, p. 2-181
Hash Table, p. 2-182
Map Table, p. 2-183
Notification Queue, p. 2-185
Run Loop, p. 2-185
Search Results, p. 2-185

OpenStep Specification—10/19/94

String, p. 2-186
Threads, p. 2-186

User Defaults, p. 2-187
Miscellaneous, p. 2-188

3-1 Chapter 3: Display PostScript

31 Classes
NSDPSContext, p. 3-1

3-6 Protocols
NSDPSContextNatification, p. 3-6

3-7 Display PostScript Operators

3-8 Client Library Functions
PostScript Execution Context Functions, p. 3-8
Communication with the Display PostScript Server, p. 3-8

3-10 Single-Operator Functions
“PS’ Prefix Functions, p. 3-10
“DPS’ Prefix Functions, p. 3-10

3-11 Typesand Constants
Defined Types, p. 3-11
Enumerations, p. 3-13
Symbolic Constants, p. 3-14
Global Variables p. 3-14

OpenStep Specification—10/19/94

| ntroduction

This document describes the application programming interface (API) of OpenStep™. OpenStep is an operating
system independent, object-oriented application layer, based on NeXT’s advanced object technology. OpenStep

contains these major components:

Application

OpenStep

Device-Dependent
Windowing Extensions

Operating System

Figure 1. Mgjor Components of OpenStep

OpenStep Specification—10/19/94

Intro-1

Application Kit The Application Kit™ provides the basic software for writing interactive
applications—applications that use windows, draw on the screen, and respond
to user actions on the keyboard and mouse. The Application Kit contains the
components that define the OpenStep user interface.

Foundation Kit The Foundation Kit™ provides the fundamental building blocks that
applications useto manage data and resources. It definesfacilitiesfor handling
multibyte character sets, object persistency and distribution, and provides an
interface to common operating system facilities.

Display PostScript System The Display PostScript® system provides OpenStep with its
device-independent imaging model.

The OpenStep API isexpressed in the Objective C language, an object-oriented extension of ANSI C. Thelanguage
itself lies outside of the scope of this specification. For information on Objective C, see NEXTSTEP

Obj ect-Oriented Programming and the Obj ective C Language (Addison-Wesley Publishing Co., 1993). Please note
that many of the types used for method argument and return values in the OpenStep specification are defined in the
Objective C language. These include:

BOOL
Class
id

IMP

nil
Protocol
SEL

In addition, the type codes used to encode method argument and return types for archiving and other purposes are
also defined in the Objective C language.

How this Document Is Organized

The three components of OpenStep are described in separate chapters of this document, starting with Chapter 1,
“The Application Kit”. Each chapter is organized in the same way, having these standard sections:

Intro-2 OpenStep Specification—10/19/94

Classes

This section lists the API for each class defined in the component. For each class, these subsections may appear:
Inherits From: Theinheritance hierarchy for the class. For example:

NSPanel : NSwWindow : NSResponder : NSObject

Thefirst class listed (NSPanel, in this example) is the class's superclass. The
last class listed is generally NSObject, the root of almost all OpenStep
inheritance hierarchies. The classes between show the chain of inheritance
from NSObject to the superclass. (This particular example shows the
inheritance hierarchy for the NSMenu class of the Application Kit.)

Conforms To: The formal protocols that the class conforms to. These include both protocols
the class adopts and those it inherits from other adopting classes. If inherited,
the name of the adopting classin given in parentheses. For example:

NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

(This particular example is from the NSArray class in the Foundation Kit.)
Declared In: The header file that declares the class interface. For example:

Foundation/NSString.h

(This example is from the NSString class.)

Next, the methodsthe class declares and implementsarelisted by name and grouped by type. For example, methods
used to draw are listed separately from methods used to handle events. Thislisting includes all the methods
declared intheclass. It also may include amethod declared in aprotocol the class conformsto, if thereis something
extraordinary about the class'simplementation of the method. Each method is accompanied by abrief description
which states what the method does and mentions the arguments and return value, if any.

If aclasslets you define another object—a del egate—that can intercede on behalf of instances of the class, the
methods that the del egate can implement are described in a separate section. These are not methods defined in the
class; rather, they’re methods that you can define to respond to messages sent from instances of the class. In essence,
this section documents an informal protocol. But because these methods are so closely tied to the behavior of a
particular class, they’re documented with the class rather than in the “ Protocols’ section.

Some class specifications have separate sections with titles such as “Methods Implemented by the Superview”,
“Methods Implemented by Observers’, or “Methods Implemented by the Owner.” These are also informal
protocols. They document methods that can or must be implemented to receive messages on behalf of instances of
the class.

OpenStep Specification—10/19/94 Intro-3

Protocols

The protocols section documents both formal and informal protocols. Formal protocols are those that are declared
using the @protocol compiler directive. They can be formally adopted and implemented by a class and tested by
sending an object a confor msToProtocol: message.

Some formal protocols are adopted and implemented by OpenStep classes. However, many formal protocols are
declared by akit, but not implemented by it. They list methods that you can implement to respond to kit-generated
messages.

A few formal protocols are implemented by akit, but not by a classthat’s part of the documented API. Rather, the
protocol isimplemented by an anonymous object that the kit supplies. The protocol lets you know what messages
you can send to the object.

Like formal protocols, informal protocols declare alist of methods that others are invited to implement. If an
informal protocol is closely associated with one particular class—for example, thelist of methods implemented by
the delegate—it’'s documented in the class description. Informal protocols associated with more than one class, or
not associated with any particular class, are documented with the formal protocols in this section.

Protocol information is organized into many of the same sections as described above for a class specification. But
protocols are not classes and therefore differ somewhat in the kind of information provided. The sections of a
protocol specification are shown in bold in the following:

Adopted By: A list of the OpenStep classes that adopt the protocol. Many protocols declare
methods that applications must implement and so are not adopted by any
OpenStep classes.

Some protocols are implemented by anonymous objects (instances of an
unknown class); the protocol is the only information available about what
messages the object can respond to. Protocols that have an implementation
available through an anonymous object generally don’t have to be
reimplemented by other classes.

Aninformal protocol can’t be formally adopted by aclassand it can’t formally incorporate another protocol. Soits
description begins with information about the category where it’s declared:

Category Of: The class that the category belongs to. Informal protocols are typicaly
declared as categories of the NSObject class. This gives them the widest
possible scope.

All descriptions of protocols, whether formal or informal, list where the protocol is declared:
Declared In: The header file where the protocol is declared.

If the protocol includes enough methods to warrant it, they’re divided by type and presented just as the methods of
aclassare.

Intro-4 OpenStep Specification—10/19/94

Functions

Related functions are grouped together under a heading that describes the common purpose. Each function, its
arguments, and its return value are briefly described in an accompanying comment.

Types and Constants

Related defined types, enumeration constants, symbolic constants, structures, and global variables are grouped
together under a heading that describes the common purpose. A short description accompanies each group.

OpenStep Specification—10/19/94 Intro-5

Intro-6

1 Application Kit

Introduction

The Application Kit defines Objective C classes, protocols, C functions, constants, and datatypes that are designed
to be used by virtually every OpenStep application. The principa aim of the Application Kit isto provide the
framework for implementing a graphical, event-driven application.

OpenStep Specification—10/19/94 Introduction: Application Kit 1-1

Classes

The Application Kit contains over sixty classes which inherit directly or indirectly from NSObject, the root class
defined in the Foundation Kit. The following diagram showsthe inheritance rel ationship among these classes. After
the diagram, the specifications for these classes are arranged in a phabetical order.

1-2 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSCell

NSActionCell

NSButtonCell

NSColor
NSColorList
NSCursor
NSDataLink
NSDataLinkManager
NSEvent

NSFont

NSBrowserCell

NSFontManager

NSBitmaplmageRep

NSCachedimageRep

NSImage

[[EUENe

NSObject I-

NSCustomimageRep .|

NSFormCell

NSSliderCell
NSTextFieldCell

NSImageRep

NSPasteboard
NSPrintinfo

NSPrintOperation

NSEPSImageRep

NSMenuCell

NSButton

NSPopUpButton

NSColorwell

—| NSClipView .

NSMatrix NSForm

EIEI

—| NSControl '—

—| NSScroller I

NSPrinter

NSApplication

—| NSScrollView !

—| NSSlider !

—| NSSplitView .

NSResponder

NSView

NSText

—| NSTextField I
NSCStringText

Figure 1-1. Application Kit Classes

OpenStep Specification—10/19/94

NSWindow

NSPanel

NSColorPanel

NSDataLinkPanel
NSFontPanel
NSHelpPanel

NSMenu

NSPageLayout

NSPrintPanel

NSSavePanel NSOpenPanel

{IIIIII[

Classes: Application Kit

1-3

NSActionCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSActionCell.h

Class Description

Co

1-4

An NSActionCell defines an active areainside a control (an instance of NSControl or one of its subclasses). Asan
NSControl’s active area, an NSActionCell does three things: it usually performs display of text or anicon (the
subclass NSSliderCell isan exception); it providesthe NSControl with atarget and an action; and it handles mouse
(cursor) tracking by properly highlighting its area and sending action messages to its target based on cursor
movement. The only way to specify the NSControl for a particular NSActionCell is to send the NSActionCell a
drawWithFrame:inView: message, passing the NSControl as the argument for the inView: keyword of the
method.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. Asa user
mani pulates an NSControl, NSActionCell’strackM ouse:inRect: of View: untilM ouseUp: method (inherited from
NSCell) updates its appearance and sends the action message to the target object with the NSControl object asthe
only argument.

Usually, the responsibility for an NSControl’s appearance and behavior is completely given over to acorresponding
NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don't follow thisrule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every NSActionCell
has an integer tag. Note, however, that no checking is done by the NSActionCell object itself to ensure that the tag
isunique. Seethe NSMatrix classfor an example of asubclass of NSControl that contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, such as setFont: and setBordered:,
are reimplementations of methods inherited from NSCell. They’re subclassed to ensure that the NSActionCell is
redisplayed if it's currently in an NSControl.

nfiguring an NSActionCell

— (void)setAlignment: (NSTextAlignment)mode Sets the NSActionCell’s text alignment to mode.

— (void)setBezeled: (BOOL)flag Adds or removes the NSActionCell’s bezel.

— (void)setBordered: (BOOL)flag Adds or removes the NSActionCell’s border.

— (void)setEnabled: (BOOL)flag Sets whether the NSActionCell reacts to mouse and

keyboard events.

Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setFloatingPointFor mat: (BOOL)autoRange
left: (unsigned int)leftDigits
right:(unsigned int)rightDigits

— (void)setFont: (NSFont *)fontObject

— (void)setl mage: (NSImage *)image

Manipulating NSActionCell Values
— (double)doubleValue
— (float)floatVValue
—(int)intValue
— (void)setStringValue: (NSString *)aString
— (NSString *)stringValue

Displaying

— (void)drawWithFrame: (NSRect)cellFrame
inView:(NSView *)control View

— (NSView *)controlView

Target and Action
— (SEL)action
— (void)setAction: (SEL)aSelector
— (void)setTar get: (id)anObject

— (id)tar get

Assignhing a Tag
— (void)setTag: (int)anint

— (int)tag

OpenStep Specification—10/19/94

Sets the NSActionCell’s floating point format.

Sets the NSActionCell’s font to fontObject.
Setsthe NSActionCell’s icon to image.

Returns the NSActionCell’s contents as adouble.
Returns the NSActionCell’s contents as a float.
Returns the NSActionCell’s contents as an int.

Sets the NSActionCell’s contents to a copy of aString.

Returns the NSActionCell’s contents as a string.

Draws the NSActionCell in the rectangle cellFrame of
control View (which should normally be an NSControl).

Returns the view (normally an NSControl) in which the
NSActionCell was last drawn.

Returns the NSActionCell’s action method.

Sets the NSActionCell’s action method to aSelector.
Sets the NSActionCell’s target object to anObject.
Returns the NSActionCell’s target object.

Sets the NSActionCell’s tag to anint.
Returns the NSActionCell’s tag.

Classes: NSActionCell 1-5

NSApplication

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSApplication.h

AppKit/NSColorPanel.h
AppKit/NSDatal inkPanel.h
AppKit/NSHelpPanel.h
AppKit/NSPagel ayout.h

Class Description

The NSApplication class provides the central framework of your application’s execution. Every application must
have exactly one instance of NSApplication (or of a custom subclass of NSApplication). Your program’s main()
function should create this instance by calling the sharedApplication class method. (Alternatively, you could use
alloc and init, making surethey’re called only once.) After creating the NSApplication, the main() function should
load your application’s main nib file, and then start the event loop by sending the NSApplication arun message.
Here's an example of atypical OpenStep main() function in its entirety:

void main(int argc, char *argv[]) ({
NSApplication *app = [NSApplication sharedApplication];
[NSBundle loadNibNamed:@"myMain" owner:app] ;
[app runl];

}

Creating the NSApplication object connects the program to the window system and the Display PostScript server,
and initializesits PostScript environment. The NSApplication object maintainsalist of all the NSWindowsthat the
application uses, so it can retrieve any of the application’s NSViews.

TheNSApplication object’smaintask isto receive events from the window system and di stribute them to the proper
NSResponders. The NSApplication translates an event into an NSEvent object, then forwards the NSEvent to the
affected NSWindow object. A key-down event that occurs while the Command key is pressed resultsin a
commandK ey: message, and every NSWindow has an opportunity to respond to it. Other keyboard and mouse
events are sent to the NSWindow associated with the event; the NSWindow then distributes these NSEventsto the
objectsin its view hierarchy.

In general, it's neater and cleaner to separate the code that embodies your program’s functionality into a number of
custom objects. Usually those custom objects are subclasses of NSObject. Methods defined in your custom objects
can be invoked from a small dispatcher object without being closely tied to the NSApplication object. It'srarely
necessary to create a custom subclass of NSApplication. You will need to do so only if you need to provide your
own special response to messages that are routinely sent to the NSA pplication object. To use a custom subclass of
NSApplication, simply substitute it for NSApplication in the main() function above.

1-6 Chapter 1: Application Kit OpenStep Specification—10/19/94

When you create an instance of NSApplication (or of a custom subclass of NSApplication), it gets stored as the
global variable NSApp. Although this global variable isn’t used in the example main() function above, you might
find it convenient to refer to NSApp within the source code for your application’s custom objects. Note that you
can also retrieve the NSApplication object by invoking sharedApplication.

The NSApplication class sets up autorelease pools during initialization and during the event loop—that is, within
itsinit (or sharedApplication) and r un methods. Similarly, the methodsthat the Application Kit addsto NSBundle
employ autorel ease pools during the loading of nib files. The autorel ease pools aren’t accessible outside the scope
of the respective NSApplication and NSBundle methods. Thisisn't usually aproblem, because atypical OpenStep
application instantiates its objects by loading nib files (and by having the objects from the nib file create other
objects during initialization and during the event loop). However, if you do need to use OpenStep classeswithin the
main() function itself (other than to invoke the methods just mentioned), you should instantiate an autorel ease pool
before using the classes, and then release the pool once you're done. For more information, see the description of
the NSAutoreleasePool class in the Foundation Kit.

The Delegate and Observers

The NSApplication object can be assigned a del egate that responds on behalf of the NSApplication to certain
messages addressed to the NSApplication object. Some of these messages, such as
application:openFile:withType:, ask the delegate to open afile. Another message,
applicationShouldTer minate:, |ets the delegate determine whether the application should be allowed to quit.

An NSApplication can also have observers. Observers receive notifications of changes in the NSApplication, but
they don’'t have the unique responsibility that a delegate has. Any instance of a class that implements an observer
method can register to receive the corresponding notification. For example, if a classimplements
applicationDidFinishLaunching: and registers to receive the corresponding notification, instances of this class
aregiven an opportunity to react after the NSA pplication hasbeen initialized. (The observer methodsarelisted later
in this class specification. For information about how to register to receive notifications, see the class specification
for the Foundation Kit's NSNotificationCenter class.)

There can be only one delegate, but there can be many observers. The delegate itself can be an observer—in fact,
in many applications the delegate might be the only observer. Whereas most observers need to explicitly register
with an NSNoatificationCenter before they can receive a particular notification message, the delegate need only
implement the method. By simply implementing an observer method, the NSApplication’s delegateis
automatically registered to receive the corresponding notification.

Creating and Initializing the NSApplication

+ (NSApplication *)sharedApplication Returnsthe NSApplication instance, creating it if it doesn’t
yet exist.

OpenStep Specification—10/19/94 Classes: NSApplication 1-7

— (void)finishLaunching Activates the application, opens any files specified by the
“NSOpen” user default, and unhighlights the
application’sicon in the Workspace Manager. This
method isinvoked by run beforeit startsthe event loop.
When this method begins, it posts the notification
NSA pplicationWill FinishLaunchingNotification with
the receiving object to the default notification center.
When it successfully completes, it poststhe notification
NSA pplicationDidFinishLaunchingNotification. If you
override finishL aunching, the subclass method should
invoke the superclass method.

Changing the Active Application

— (void)activatel gnoringOther Apps. (BOOL)flag Makes this the active application. If flag is NO, the
application is activated only if no other applicationis
currently active.

— (void)deactivate Deactivates the application.

— (BOOL)isActive Returns whether thisis the active application.

Running the Event Loop
— (void)abortM odal Aborts the event loop started by runM odalFor Window:.

— (NSM odal Session)beginM odal SessionFor Window: (NSWindow *)the\Window
Sets up amodal session with theWindow.

— (void)endM odal Session: (NSM odal Session)session
Finishes amodal session.

—(BOOL)isRunning Returns whether the main event loop is running.
— (void)run Starts the main event loop.

— (int)runM odal For Window: (NSWindow *)theWindow
Starts amodal event loop for theWindow.

— (int)runM odal Session: (NSM odal Session)session
Runs amodal session.

1-8 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)sendEvent: (NSEvent *)theEvent

— (void)stop: (id)sender
— (void)stopM odal
— (void)stopM odalWithCode: (int)returnCode

Getting, Removing, and Posting Events

— (NSEvent *)currentEvent

Dispatches events to other objects. When sending the
activate application event, this method posts the
notifications NSA pplicationWillBecomeActive and
NSA pplicationDidBecomeA ctive with the receiving

object to the default notification center. When sending

the deactivate application event, it posts the

NSA pplicationWillResignActiveNotification and
NSA pplicationDidResignActiveNotification
notifications with the receiving object to the default
notification center.

Stops the main event loop.
Stops the modal event loop.

Stops the event loop started by runM odalFor Window:
and sets the code that runM odal For Window: will
return.

Returns the current event.

— (void)discar dEventsM atchingM ask:: (unsigned int)mask
Removes from the event queue all events matching mask

beforeEvent: (NSEvent *)lastEvent

that were generated before lastEvent.

— (NSEvent *)nextEventM atchingM ask: (unsigned int)mask

untilDate: (NSDate *)expiration
inM ode: (NSString *)mode
dequeue: (BOOL Yflag;

Returns the next event matching mask, or nil if

no such event isfound before the expiration date. If flag
iSYES, the event isremoved from the queue. The mode
argument names an NSRunL oop mode that determines
what other portsarelistened to and what timersmay fire
while the NSApplication is waiting for the event.

— (void)postEvent: (NSEvent *)event atStart: (BOOL)flag

Sending Action Messages

— (BOOL)sendAction: (SEL)aSelector
to: (id)aTarget
from: (id)sender

— (id)tar getFor Action: (SEL)aSel ector

OpenStep Specification—10/19/94

Adds event to the beginning of the application’s event

queue if flag is YES, and to the end otherwise.

Sends an action message to aTarget or up the responder

chain.

Returns the object that receives the action message

aSelector.

Classes: NSApplication 1-9

— (BOOL)tryToPerform:(SEL)aSelector Attempts to send a message to the application or the
with: (id)anObject delegate.

Setting the Application’s Icon

— (void)setApplicationl conl mage: (NSImage *)anl mage
Sets the application’s icon to anlmage.

— (NSImage *)applicationl conl mage Returns the NSImage used for the application’sicon.

Hiding All Windows

— (void)hide: (id)sender Hides al the application’s windows. When this method
begins, it posts the notification
NSA pplicationWillHideNotification with the receiving
object to the default notification center. When it
completes successfully, it posts the notification
NSA pplicationDidHideNoatification.

—(BOOL)isHidden Returns YES if windows are hidden.
— (void)unhide: (id)sender Restores hidden windows to the screen.
— (void)unhideWithoutActivation Restores hidden windows without activating their owner.

When this method begins, it posts the notification

NSA pplicationWillUnhideNotification with the
receiving object to the default notification center. When
it completes successfully, it posts the notification

NSA pplicationDidUnhideNotification.

Managing Windows
— (NSWindow *)keyWindow Returns the key window.
— (NSWindow *)mainWindow Returns the main window.

— (NSWindow *)makeWindowsPer for m: (SEL)aSel ector
inOrder:(BOOL)flag Sends the aSelector message to the application’s
NSWindows—in front-to-back order if flagis YES,
otherwise in the order of the array that the windows
method returns.

— (void)miniaturizeAll: (id)sender Miniaturizes all the receiver’s application windows.

— (void)preventWindowOrdering Suppressesthe usual window ordering in handling the most
recent mouse-down event.

1-10 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setWindowsNeedUpdate: (BOOL)flag Sets whether the application’s windows need updating
when the application hasfinished processing the current
event. Thismethod is especially useful for making sure
menus are updated to reflect changes not initiated by
user actions.

— (void)updateWindows Sendsan update message to on-screen NSWindows. When
this method begins, it sends the notification
NSA pplicationWillUpdateNotification with the
receiving object to the default notification center. When
it successfully completes, it sends the notification
NSA pplicationDidUpdateNotification.

— (NSArray *)windows Returns an array of the application’s NSWindows.

— (NSWindow *)windowWithWindowNumber : (int)windowNum
Returns the NSWindow object corresponding to

windowNum.
Showing Standard Panels
— (void)order FrontColor Panel: (id)sender Brings up the color panel.
— (void)order FrontDataL ink Panel: (id)sender Shows the shared instance of the datalink panel, creating it
first if necessary.
— (void)or der FrontHelpPanel: (id)sender Shows the application’s help panel or the default one.
— (void)runPagel ayout: (id)sender Runs the application’'s page layout panel.

Getting the Main Menu
— (NSMenu *)mainMenu Returnsthe id of the application’s main menu.

— (void)setMainM enu: (NSMenu *)aMenu Makes aMenu the application’s main menu.

Managing the Windows Menu
— (void)addWindowsl tem: (id)aWindow Adds a Windows menu item for alndow.
title:(NSString *)aString
filename: (BOOL)isFilename
— (void)arrangel nFront: (id)sender Orders al registered NSWindows to the front.

— (void)changeWindowsl tem: (id)aWwindow Changes the Windows menu item for aMndow.
title:(NSString *)aString
filename: (BOOL)isFilename

—(void)removeWindowsl tem: (id)andow Removes the Windows menu item for awindow.

OpenStep Specification—10/19/94 Classes: NSApplication 1-11

— (void)setWindowsM enu: (id)aMenu Sets the Windows menu.
— (void)updateWindowsl tem: (id)aWwindow Updates the Windows menu item for avMndow.

— (NSMenu *)windowsM enu Returns the Windows menu.

Managing the Services menu

— (void)register ServicesM enuSendTypes: (NSArray *)sendTypes

returnTypes: (NSArray *)returnTypes Registers pasteboard types the application can send and
receive.
— (NSMenu *)servicesM enu Returns the Services menu.
— (void)setServicesM enu: (NSMenu *)aMenu Sets the Services menu.
— (id)validRequestor For SendType: (NSString *)sendType
returnType: (NSString *)returnType Indicates whether the NSApplication can send and receive
the specified types.

Getting the Display PostScript Context

— (NSDPSContext *)context Returns the NSApplication’s Display PostScript context.

Reporting an Exception

— (void)repor tException: (NSException *)anException
L ogs the given exception by calling NSL og().

Terminating the Application

— (void)ter minate: (id)sender Frees the NSA pplication object and exits the application.

Assigning a Delegate
— (id)delegate Returns the NSApplication’s delegate.
— (void)setDelegate: (id)anObject Makes anObject the NSApplication’s delegate.

Implemented by the Delegate

— (BOOL)application:(id)sender Sent directly by sender to the delegate. Opensthe specified
openFileWithoutUI: (NSString *)filename file to run without a user interface.Work with the file
will be under programmatic control of sender, rather

than under keyboard control of the user. Returns Y ES or

NO to indicate whether the file was successfully opened

1-12 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (BOOL)application: (NSApplication *)application Sent directly by application to the delegate. Like
openFile: (NSString *)Yfilename application:openFileWithoutUl:, but brings up the
user interface of the file's application.

— (BOOL)application: (NSApplication *)application Sent directly by application to the delegate. Like
openTempFile: (NSString *)filename application:openFile:, but afile opened through this
method is assumed to be temporary; it's the
application’s responsibility to remove thefile at the
appropriate time.

— (void)applicationDidBecomeActive: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSApplicationDidBecomeActiveNatification. If the
delegate implements this method, it's automatically
registered to receive the notification.

— (void)applicationDidFinishL aunching: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSA pplicationDidFinishLaunchingNoatification. If the
delegate implements this method, it’s automatically
registered to receive the notification.

— (void)applicationDidHide: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSApplicationDidHideNotification. If the delegate
implementsthismethod, it'sautomatically registered to
receive the notification.

— (void)applicationDidResignActive: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSApplicationDidResignActiveNoatification. If the
delegate implements this method, it’'s automatically
registered to receive the notification.

— (void)applicationDidUnhide: (NSNatification * JaNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSApplicationDidUnhideNotification. If the delegate
implementsthismethod, it’sautomatically registered to
receive the notification.

OpenStep Specification—10/19/94 Classes: NSApplication 1-13

— (void)applicationDidUpdate: (NSNatification * JaNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSApplicationDidUpdateNatification. If the delegate
implementsthismethod, it’sautomatically registered to
receive the notification.

— (BOOL)applicationOpenUntitledFile:(NSApplication *)application
Sent directly by application to the delegate. Like
application:openFile:, but opens a new, untitled
document.

— (BOOL)applicationShouldTerminate: (id)sender ~ Sent directly by sender to the delegate. Returns Y ESiif the
application should terminate.

— (void)applicationWillBecomeActive: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSA pplicationWillBecomeActiveNatification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

— (void)applicationWillFinishL aunching: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSA pplicationWillFinishLaunchingNoatification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (void)applicationWillHide: (NSNoatification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSApplicationwWillHideNatification. If the delegate
implementsthismethod, it'sautomatically registered to
receive this notification.

— (void)applicationWillResignActive: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSApplicationWillResignActiveNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

— (void)applicationWillUnhide: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSA pplicationWillUnhideNotification. If the delegate
implementsthismethod, it'sautomatically registered to
receive the notification.

1-14 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)applicationWillUpdate: (NSNotification * aNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSApplicationWillUpdateNotification. If the delegate
implementsthismethod, it’sautomatically registered to
receive this notification.

OpenStep Specification—10/19/94 Classes: NSApplication 1-15

NSBitmaplmageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSBitmapl mageRep.h

Class Description

An NSBitmaplmageRep isan object that can render an image from bitmap data. The datacan bein Tag ImageFile
Format (TIFF), or it can be raw image data. If it's raw data, the object must be informed about the structure of the
image—its size, the number of color components, the number of bits per sample, and so on—when it’s first

initialized. If it's TIFF data, the object can get thisinformation from the various TIFF fields included with the data.

Although NSBitmapl mageReps are often used indirectly, through instances of the NSImage class, they can also be
used directly—for example to manipulate the bits of an image as you might need to do in a paint program.

Setting Up an NSBitmapIlmageRep

A new NSBitmaplmageRep is passed bitmap datafor an image when it’sfirst initialized. An NSBitmaplmageRep
can also be created from bitmap data that’s read from a specified rectangle of afocused NSView.

Although the NSBitmapl mageRep class inherits NSImageRep methods that set image attributes, these methods
shouldn’t be used. Instead, you should either allow the object to find out about the image from the TIFF fields or
use methods defined in this class to supply thisinformation when the object isinitialized.

1-16 Chapter 1: Application Kit OpenStep Specification—10/19/94

TIFF Compression

TIFF datacan beread and rendered after it has been compressed using any one of the four schemesbriefly described

below:
LZW

PackBits

JPEG

CCITTFAX

Compresses and decompresses without information loss, achieving
compression ratios up to 5:1. It may be somewhat slower to compress and
decompress than the PackBits scheme.

Compresses and decompresses without information loss, but may not achieve
the same compression ratios as LZW.

Compresses and decompresses with some information loss, but can achieve
compression ratios anywhere from 10:1 to 100:1. Theratio is determined by a
user-settable factor ranging from 1.0 to 255.0, with higher factors yielding
greater compression. More information is lost with greater compression, but
15:1 compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for images that
specify at least 4 bits per sample.

Compresses and decompresses 1 bit grayscale images using international fax
compression standards CCITT3 and CCITTA4.

An NSBitmaplmageRep can a so produce compressed TIFF data for itsimage using any of these schemes.

Allocating and Initializing a New NSBitmaplmageRep Object

+ (id)imageRepWithData: (NSData *)tiffData Creates and returns an initialized NSBitmapl mageRep

corresponding to the first image in tiffData.

+ (NSArray *)imageRepsWithData: (NSData *)tiffData

Createsand returnsinitialized NSBitmapl mageRep objects
for all theimagesin tiffData.

— (id)initWithData: (NSData *)tiffData Initializes anewly allocated NSBitmapl mageRep from the

first TIFF header and image data found in tiffData.

— (id)initWithFocusedViewRect: (NSRect)rect Initializes the new object using data read from the image

OpenStep Specification—10/19/94

contained in the rectangle rect.

Classes: NSBitmaplmageRep 1-17

— (id)initwithBitmapDataPlanes: (unsigned char **)planes

pixelswWide: (int)width Initializes the new object from raw bitmap datain the
pixelsHigh: (int)height planes data buffers. Asthe datais raw, the other
bitsPer Sample: (int)bps arguments specify its attributes.

samplesPer Pixel: (int)spp

hasAlpha: (BOOL)alpha

isPlanar :(BOOL)config

color SpaceName: (NSString *)color SpaceName
bytesPer Row: (int)rowBytes

bitsPer Pixel: (int)pixel Bits

Getting Information about the Image

— (int)bitsPer Pixel Returns how many bits are needed to specify one pixel.
— (int)samplesPer Pixel Returns the number of samples (components) in the data.
— (BOOL)isPlanar Returns YES if in planar configuration, NO if meshed.

— (int)number OfPlanes Returns the number of data planes.

— (int)bytesPer Plane Returns the number of bytesin each data plane.

— (int)bytesPer Row Returns the number of bytesin a scan line.

Getting Image Data

— (unsigned char *)bitmapData Returns a pointer to the bitmap data. If the data is planar,
returns a pointer to the first plane.

— (void)getBitmapDataPlanes: (unsigned char **)data

Provides pointers to each plane of bitmap data.

Producing a TIFF Representation of the Image

+ (NSData *)TI FFRepresentationOfl mageRepsl nArray: (NSArray *)anArray

Returns a TIFF representation of the imagesin the
specified NSArray, using the compression that’s
returned by getCompression:factor: (if applicable).

+ (NSData *) T FFRepresentationOfl mageRepsi nArray: (NSArray *)anArray

usingCompr ession: (NSTIFFCompression)compressionType

factor: (float)factor Returns a TIFF representation of the imagesin the
specified NSArray, which are compressed using
compressionType and factor. If the specified
compression isn't applicable, no compression is used.

1-18 Chapter 1: Application Kit

OpenStep Specification—10/19/94

— (NSData*)TIFFRepresentation Returns a TIFF representation of the image, using the
compression that’s returned by
getCompression:factor: (if applicable).

— (NSDhata*)TI FFRepresentationUsingCompr ession: (NSTIFFCompression)compressionType
factor :(float)factor Returns a compressed TIFF representation of the image,
having the specified compression type and compression
factor. If the specified compression isn’t applicable, no
compression is used. Raises NSTIFFException if an
atempt is made to create a TIFF representation using
OpenStep custom color space bitmaps.

Setting and Checking Compression Types

+ (void)get TIFFCompressionTypes:. (const NSTIFFCompression **)list
count: (int *)numTypes Returns all available compression types.

+ (NSString *)localizedNameFor T FFCompressionType: (NSTIFFCompress on)compression
Returns the localized name for the compression type.

— (BOOL)canBeCompressedUsing: (NSTIFFCompressi on)compression
Returns YES if the image can be compressed using the
specified type of compression.

— (void)getCompression: (NSTIFFCompression *)compression

factor: (float *)factor Returns, in its arguments, the compression type and
compression factor.

— (void)setCompression: (NSTIFFCompression)compression
factor : (float)factor Sets the compression type and compression factor.

OpenStep Specification—10/19/94 Classes: NSBitmaplmageRep 1-19

NSBox

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSBox.h

Class Description

An NSBox objectisasimple NSView that can do two things: It can draw aborder around itself and it can titleitself.
You can use an NSBox to group, visually, some number of other NSViews. These other NSViews are added to the
NSBox through the typical subview-adding methods, such as addSubview: and replaceSubview:with:.

An NSBox contains a content area, arectangle set within the NSBox’s frame in which the NSBox's subviews are
displayed. The size and location of the content area depends on the NSBox’s border type, title location, the size of
the font used to draw the title, and an additional measure that you can set through the setContentViewM argins:
method. When you create an NSBox, an instance of NSView is created and added (as a subview of the NSBox
object) tofill the NSBox’s content area. If you replace this content view with an NSView of your own, your NSView
will be resized to fit the content area. Similarly, as you resize an NSBox its content view is automatically resized
to fill the content area.

The NSViews that you add as subviews to an NSBox are actually added to the NSBox's content viev—NSView's
subview-adding methods are redefined by NSBox to ensurethat asubview is correctly placed in the view hierarchy.
However, you should note that the subviews method isn't redefined: It returns an NSArray containing asingle
object, the NSBox’s content view.

Getting and Modifying the Border and Title

— (NSRect)bor der Rect Returns the rectangle in which the border is drawn.
— (NSBorderType)bor der Type Returns the box’s border type.

— (void)setBor der Type: (NSBorderType)aType Sets the box’s border to aType.

— (void)setTitle:(NSString *)aString Sets the box’stitle to aString.

— (void)setTitleFont: (NSFont *)fontObj Sets the NSFont of the title to fontOb;.

— (void)setTitlePosition: (NSTitlePosition)aPosition Sets the position of the title to aPosition.

— (NSString *)title Returns the title of the box.
(g
— (idytitleCdll Returns the Cell used to draw the title.
(
— (NSFont *)titleFont Returns the NSFont used to draw the title.

1-20 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (NSTitlePosition)titlePosition Returns the position of thetitle.

— (NSRect)titleRect Returns the rectangle in which the title is drawn.

Setting and Placing the Content View

— (id)contentView Returns the content view.
— (NSSize)contentViewMar gins Getsthe distances between the border and the content view.
— (void)setContentView: (NSView *)aView Replaces the NSBox's content view with aView.

— (void)setContentViewMar gins: (NSSize)offsetSize Sets the distances between the border and the content view
to the horizontal and vertical amountsin offsetSze.

Resizing the Box

— (void)setFrameFromContentFrame: (NSRect)contentFrame
Resizes the box to accommodate contentFrame.

— (void)sizeToFit Resizes the box to exactly enclose its subviews.

OpenStep Specification—10/19/94 Classes: NSBox 1-21

NSBrowser

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSBrowser.h

Class Description

NSBrowser provides a user interface for displaying and selecting items from alist of data, or from hierarchically
organized lists of data such as directory paths. When working with a hierarchy of data, the levels are displayed in
columns, which are numbered from left to right, beginning with 0. Each column consists of an NSScrollView
containing an NSMatrix filled with NSBrowserCells. NSBrowser relies on a delegate to provide the datain its
NSBrowserCells. See the NSBrowserCell class description for more on its implementation.

Browser Selection

Anentry inan NSBrowser’s column can be either abranch node (such asadirectory) or aleaf node (such asafile).
When the user sel ectsasingle branch node entry in acolumn, the NSBrowser sendsitself theaddColumn message,
which messages its delegate to load the next column. The user’s selection can be represented as a character string;
if the selection is hierarchical (for example, afilename within a directory), each component of the path to the
selected node is separated by “/”. To use some other character as the delimiter, invoke setPathSepar ator:.

An NSBrowser can be set to allow selection of multiple entriesin acolumn, or to limit selection to asingle entry.
When set for multiple selection, it can also be set to limit multiple selection to |eaf nodes only, or to allow selection
of both types of nodes together.

As a subclass of NSControl, NSBrowser has a target object and action message. Each time the user selects one or
more entries in a column, the action message is sent to the target. NSBrowser also adds an action to be sent when
the user double-clicks on an entry, which allows the user to select items without any action being taken, and then
double-click to invoke some useful action such as opening afile.

User Interface Features

The user interface features of an NSBrowser can be changed in anumber of ways. The NSBrowser may or may not
have a horizontal scroller. (The NSBrowser’s columns, by contrast, always have vertical scrollers—although a
scroller’s buttons and knob might be invisibleif the column doesn’t contain many entries.) You generally shouldn’t
create an NSBrowser without a horizontal scroller; if you do, you must make sure the bounds rectangle of the
NSBrowser iswide enough that all the columns can be displayed. An NSBrowser’s columns may be bordered and
titled, bordered and untitled, or unbordered and untitled. A column’stitle may be taken from the selected entry in
the column to its left, or may be provided explicitly by the NSBrowser or its delegate.

1-22 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSBrowser’s Delegate

NSBrowser requires adelegate to provide it with datato display. The delegateis responsible for providing the data
and for setting each item as abranch or leaf hode, enabled or disabled. It can a so receive notification of eventslike
scrolling and requests for validation of columns that may have changed.

You can implement one of two delegate types:. active or passive. An active delegate creates a column’s rows (that
is, the NSBrowserCells) itself, while a passive one leaves that job to the NSBrowser. Normally, passive delegates
are preferable, because they're easier to implement. An active delegate must implement

browser : createRowsFor Column:inM atrix: to create the rows of the specified column. A passive delegate, onthe
other hand, must implement browser :number OfRowsl nColumn: to let the NSBrowser know how many rowsto
create. These two methods are mutually exclusive; you can implement one or the other, but not both. (The
NSBrowser ascertains what type of delegate it has by which method the delegate responds to.)

Both types of delegate implement browser :willDisplayCell:atRow: column: to set up state (such asthecell’'s
string value and whether the cell isaleaf or a branch) before an individual cell isdisplayed. (This delegate method
doesn’t need to invoke NSBrowserCell’s setL oaded: method, because the NSBrowser can determine that state by
itself.) An active delegate can instead set all the cells' state at the timethe cells are created, in which caseit doesn’t
need to implement browser : willDisplayCell:atRow:column:. However, a passive del egate must always
implement this method.

Setting the Delegate
— (id)delegate Returns the NSBrowser’'s del egate.

— (void)setDelegate: (id)anObject Sets the NSBrowser's del egate to anObject. Raises
NSBrowserlllegal Del egateException if the delegate
specified by anObject doesn’t respond to
browser :willDisplayCell:atRow: column: and either
of the methods browser :number OfRowsl nColumn:
or browser :createRowsFor Column:inMatrix:

Target and Action

— (SEL)doubleAction Returns the NSBrowser’s double-click action method.

—(BOOL)sendAction Sends the action message to the target. Returns Y ES upon
success, NO if no responder for the message could be
found.

— (void)setDoubleAction: (SEL)aSe ector Sets the NSBrowser’s double-click action to aSelector.

Setting Component Classes

+ (Class)cellClass Returns the NSBrowserCell class (regardless of whether a
setCédlClass: message has been sent to a particular
instance).

OpenStep Specification—10/19/94 Classes: NSBrowser 1-23

— (id)cellPrototype

— (Class)matrixClass

— (void)setCellClass: (Class)classld

— (void)setCellPrototype: (NSCell *)aCell

— (void)setM atrixClass:(Class)classld

Setting NSBrowser Behavior

—(BOOL)reusesColumns

— (void)setReusesColumns: (BOOL)flag

Returns the NSBrowser’s prototype NSCell.

Returns the class of NSMatrix used in the NSBrowser's
columns.

Sets the class of NSCell used in the columns of the
NSBrowser.

Sets the NSCell instance copied to display itemsin the
columns of NSBrowser.

Sets the class of NSMatrix used in the NSBrowser's
columns.

Returns YES if NSMatrix objects aren’t freed when their
columns are unloaded.

If flagis YES, prevents NSMatrix objectsfrom being freed
when their columns are unloaded, so they can be reused.

— (void)setTakesTitleFromPreviousColumn:(BOOL)flag

— (BOOL)takesTitleFromPreviousColumn

Allowing Different Types of Selection

— (BOOL)allowsBranchSelection

— (BOOL)allowsEmptySelection
— (BOOL)allowsM ultipleSelection
— (void)setAllowsBranchSelection: (BOOL)flag

— (void)setAllowsEmptySelection: (BOOL)flag
— (void)setAllowsM ultipleSelection: (BOOL)flag

Setting Arrow Key Behavior

— (BOOL)acceptsArrowKeys

1-24

Chapter 1: Application Kit

Sets whether the title of acolumn is set to the string value
of the selected NSCell in the previous column.

Returns Y ESif thetitle of acolumnisset to the string value
of the selected NSCell in the previous column.

Returns whether the user can select branch items when
multiple selection is enabled.

Returns whether there can be nothing selected.
Returns whether the user can select multiple items.

Sets whether the user can select branch items when
multiple selection is enabled.

Sets whether there can be nothing selected.

Sets whether the user can select multiple items.

Returns YES if the arrow keys are enabled.

OpenStep Specification—10/19/94

— (BOOL)sendsActionOnArrowKeys

— (void)setAcceptsArrowK eys: (BOOL)flag
— (void)setSendsActionOnArrowK eys. (BOOL)flag

Showing a Horizontal Scroller
— (void)setHasHorizontal Scroller: (BOOL)flag
—(BOOL)hasHorizontalScroller

Setting the NSBrowser’s Appearance
— (intymaxVisibleColumns
— (int)minColumnWidth
— (BOOL)separ atesColumns
— (void)setM axVisibleColumns: (int)columnCount
— (void)setM inColumnWidth: (int)columnWdth
— (void)setSepar atesColumns: (BOOL)flag

Manipulating Columns
— (void)addColumn
— (int)columnOfM atrix: (NSMatrix *)matrix
— (void)displayAllColumns

— (void)displayColumn: (int)column

— (int)fir stVisibleColumn
— (BOOL)isL oaded
—(int)lastColumn

— (int)lastVisibleColumn

— (void)loadColumnZero

OpenStep Specification—10/19/94

Returns NO if pressing an arrow key only scrolls the
browser, YES if it also sends the action message
specified by setAction:.

Enables or disables the arrow keys.

Sets whether pressing an arrow key will cause the action
message to be sent (in addition to causing scrolling).

Sets whether an NSScroller is used to scroll horizontally.

Returns whether an NSScroller is used to scroll
horizontally.

Returns the maximum number of visible columns.
Returns the minimum column width.

Returns whether columns are separated by bezeled borders.
Sets the maximum number of columns displayed.

Sets the minimum column width.

Sets whether to separate columns with bezeled borders.

Adds a column to the right of the last column.
Returns the column number in which matrix is located.
Updates the NSBrowser to display all loaded columns.

Updates the NSBrowser to display the column with the
given index.

Returns the index of thefirst visible column.
Returns whether column zero is loaded.

Returns the index of the last column loaded.
Returns the index of the last visible column.

L oads column zero; unloads previously loaded columns.

Classes: NSBrowser 1-25

— (int)number OfVisibleColumns

— (void)reloadColumn: (int)column

— (void)selectAll: (id)sender

— (int)selectedColumn

— (void)setL astColumn: (int)column
— (void)validateVisibleColumns

Manipulating Column Titles

— (void)drawTitle:(NSString *)title

inRect: (NSRect)aRect
of Column: (int)column

— (BOOL)isTitled

— (void)setTitled: (BOOL)flag
— (void)setTitle: (NSString *)aString

— (NSRect)titleFrameOfColumn: (int)column

of Column: (int)column

— (float)titleHeight

— (NSString *)titleOfColumn: (int)column

Scrolling an NSBrowser

— (void)scrollColumnsL eftBy: (int)shiftAmount
— (void)scrollColumnsRightBy: (int)shiftAmount
— (void)scrollColumnToVisible: (int)column

— (void)scrollViaScroller:(NSScroller *)sender

— (void)updateScroller

Event Handling

— (void)doClick: (id)sender

— (void)doDoubleClick: (id)sender

1-26

Chapter 1: Application Kit

Returns the number of columnsvisible.

Reloads column if it isloaded; setsit as the last column.
Selects all NSCellsin the last column of the NSBrowser.
Returns the index of the last column with a selected item.
Sets the last column to column.

Invokes delegate method browser :isColumnValid: for
visible columns.

Draws the title for the column at index column.

Returns whether columns display titles.
Sets whether columns display titles.

Sets the title of the column at index column to aString.

Returns the bounds of the title frame for the column at
index column.

Returns the height of column titles.

Returnsthe title displayed for the column at index column.

Scrolls columns left by shiftAmount columns.
Scrolls columns right by shiftAmount columns.
Scrolls to make the column at index column visible,
Scrolls columns left or right based on an NSScroller.

Updates the horizontal scroller to reflect column positions.

Responds to mouse clicks in a column of the NSBrowser.

Responds to double-clicks in a column of the NSBrowser.

OpenStep Specification—10/19/94

Getting Matrices and Cells

— (id)loadedCell AtRow: (int)row
column: (int)column

— (NSMatrix *)matrixlnColumn: (int)column
— (id)selectedCell

— (id)selectedCelll nColumn: (int)column

— (NSArray *)selectedCells

Getting Column Frames

— (NSRect)frameOfColumn: (int)column

— (NSRect)frameOfl nsideOfColumn: (int)column

Manipulating Paths
— (NSString *)path
— (NSString *)pathSepar ator
— (NSString *)pathToColumn: (int)column

— (BOOL)setPath: (NSString *)path
— (void)setPathSeparator : (NSString *)astring

Arranging an NSBrowser’'s Components

— (voidytile

Methods Implemented by the Delegate

— (void)browser : (NSBrowser *)sender
createRowsFor Column: (int)column
inMatrix: (NSMatrix *)matrix

OpenStep Specification—10/19/94

Loadsif necessary and returns the NSCell at row in
column.

Returns the matrix located in column.

Returns the last (rightmost and lowest) selected NSCell.
Returnsthe last (lowest) NSCell that’s selected in column.
Returns all the rightmost selected NSCells.

Returns the rectangle containing the column at index
column.

Returns the rectangle containing the column at index
column, not including borders.

Returns the browser’s current path.
Returns the path separator. The default is“/”.

Returns astring representing the path from thefirst column
to the column at index column.

Parses path and selects corresponding items in columns.

Sets the path separator to atring.

Adjusts the various subviews of NSBrowser—scrollers,
columns, titles, and so on—uwithout redrawing. Your
code shouldn’t send thismessage. It’sinvoked any time
the appearance of the NSBrowser changes.

Createsarow in matrix for each row of datato be displayed
in column of the browser. Either this method or
browser :number OfRowsl nColumn: must be
implemented, but not both (or an
NSBrowserlllegal Del egateException will be raised).

Classes: NSBrowser 1-27

— (BOOL)browser: (NSBrowser *)sender

isColumnValid: (int)column

— (int)browser : (NSBrowser *)sender

number OfRowsl nColumn: (int)column

— (BOOL)browser : (NSBrowser *)sender

selectCell: (NSString *)title
inColumn: (int)column

— (NSString *)browser : (NSBrowser *)sender

titleOfColumn: (int)column

— (void)browser : (NSBrowser *)sender

— (void)browser DidScroll: (NSBrowser *)sender

— (void)browser WillScroll: (NSBrowser *)sender

1-28

wilIDisplayCell: (id)cell
atRow: (int)row
column: (int)column

Chapter 1: Application Kit

Returns whether the contents of the specified column are
vaid.

Returns the number of rows of datain the column at index
column. Either this method or
browser : createRowsFor Column:inMatrix: must be
implemented, but not both.

Asks the delegate to select the NSCell with title title in
the column at index column.

Queries the delegate for the title to display above the
column at index column.

Notifies the delegate when the NSBrowser will display
the specified cell. The delegate should set any state
necessary for correct display of the cell.

Notifies the delegate when the NSBrowser has scrolled.

Notifies the delegate when the NSBrowser will scroll.

OpenStep Specification—10/19/94

NSBrowserCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSBrowserCell.h

Class Description

NSBrowserCell is the subclass of NSCell used by default to display data in the columns of an NSBrowser. (Each
column contains an NSMatrix filled with NSBrowserCells.) Many of NSBrowserCell’s methods are designed to
interact with NSBrowser and NSBrowser’s del egate. The delegate implements methods for |oading the NSCellsin
NSBrowser by setting their values and status. If your code needs access to a specific NSBrowserCell, you can use
the NSBrowser method loadedCell AtRow: column:.

You may find it useful to create a subclass of NSBrowserCell to alter its behavior and to enable it to work with and
display the type of datayou wish to represent. Use NSBrowser’s setCellClass: or setCellPrototype: methods to
have it use your subclass.

See the NSBrowser class specification for more details. In particular, the class description and the “Methods
Implemented by the Delegate” section describe how the NSBrowser’s del egate interacts with both NSBrowser and
NSBrowserCells.

Accessing Graphic Attributes

+ (NSlmage *)branchlmage Returns the default NSImage for branch NSBrowserCells.

+ (NSImage *)highlightedBranchl mage Returns the default NSlmage for branch NSBrowserCells
that are highlighted.

— (NSImage *)alternatel mage Returns this NSBrowserCell’s image for the highlighted
state.

— (void)setAlter natel mage: (NSImage *)anl mage Sets this NSBrowserCell’simage for the highlighted state.

Placing in the Browser Hierarchy
—(BOOL)isL eaf Returns whether the NSBrowserCell is aleaf or a branch.
— (void)setL eaf: (BOOL)flag Sets whether the NSBrowserCell is aleaf or abranch.

OpenStep Specification—10/19/94 Classes: NSBrowserCell 1-29

Determining Loaded Status

— (BOOL)isL oaded

— (void)setL oaded: (BOOL)flag

Setting State
— (void)reset
— (void)set

1-30 Chapter 1. Application Kit

Returns YESIif all the NSBrowserCell’'s state has been set
and the cell isready to display.

Setswhether all the NSBrowserCell’ s state hasbeen set and
the cell isready to display.

Unhighlights the NSBrowserCell and sets its state to 0.
Highlights the NSBrowserCell and setsits state to 1.

OpenStep Specification—10/19/94

NSBundle Additions

NSObject

Inherits From:

Declared In: AppKit/NSImage.h

AppKit/NSNibLoading.h

Class Description

The Application Kit adds these methods to the Foundation Kit's NSBundle class. These methods become part of
the classfor all applications that use the Application Kit, but not for applications that don't.

Getting the Location of Images in the File System

— (NSString *)pathFor | mageResour ce: (NSString *)name

Loading an Interface Builder File

+ (BOOL)loadNibFile: (NSString *)fileName
externalNameTable: (NSDictionary *)context
withZone:(NSZone *)zone

Returns the absolute pathname of the file containing the

specified image resource. (The name of the resourceis
simply the filename without the path of its bundle
directory; the filename extension need not be included.)

Unarchives the contents of the nib file whose absolute path

isfileName. Objects from the nib file are allocated in
the specified zone of memory. The context argument is
aname table—a dictionary whose keys are names like
“NSOwner” and whose values are existing objects that
can be referenced by the newly unarchived objects.
Returns Y ES upon success. (A nibfileis aobject
archive whose file format is currently implementation
specific. A public specification of thisfileformat will be
available at alater date.)

+ (BOOL)loadNibNamed: (NSString *)aNibName Similar to loadNibFile:externalNameTable:withZone:,

owner : (id)owner

OpenStep Specification—10/19/94

but the nametable's only element isthe specified owner
(stored with the key “NSOwner”). Objects from the nib
fileareallocated in owner’s zone. If there’sabundlefor
owner’s class, this method looks in that bundle for the
nib file named aNibName (this argument need not
include the “.nib” extension); otherwise, it looksin the
main bundle. (A nib file is a object archive whosefile
format is currently implementation specific. A public
specification of thisfile format will be available at a
later date.)

Classes: NSBundle Additions 1-31

NSButton

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSButton.h

Class Description

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to atarget
object whenit's clicked or pressed. By virtue of its NSButtonCell, NSButton is a two-state NSControl—it’s either
“off” or “on”—and it displaysits state depending on the configuration of the NSButtonCell. NSButton acquires
other attributes of NSButtonCell. The state is used as the value, so NSControl methods like setlntValue: actually
set the state (the methods setState: and state are provided as a more conceptually accurate way of setting and
getting the state). The NSButton can send itsaction continuously and display highlighting in several different ways.
What's more, an NSButton can have a key equivalent that's eligible for triggering whenever the NSButton's
NSPanel or NSWindow is the key window.

NSButton and NSMatrix both provide acontrol view, which isneeded to display an NSButtonCell object. However,
while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods are “ covers’ for
identically declared methods in NSButtonCell. (In other words, the implementation of the NSButton method
invokesthe corresponding NSButtonCell method for you, allowing you to be unconcerned with the NSButtonCell’s
existence.) The only NSButtonCell methods that don’t have coversrelate to the font used to display the key
equivalent, and to specific methods for highlighting or showing the NSButton's state (these last are usually set
together with NSButton’s set Type: method).

Creating a Subclass of NSButton

Override the designated initializer (NSView’sinitWithFrame: method) if you create a subclass of NSButton that
performsitsown initialization. If you want to use acustom NSButtonCell subclasswith your subclass of NSButton,
you haveto override the setCellClass: method, asdescribed in “ Creating New NSControls’ in the NSControl class
specification.

See the NSButtonCell class specification for more on NSButton’s behavior.

Initializing the NSButton Factory
+ (Class)cellClass Returns the subclass of NSButtonCell used by NSButton.
+ (void)setCellClass: (Class)classld Sets the subclass of NSButtonCell used by NSButton.

1-32 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the Button Type

— (void)set Type: (int)aType

Setting the State
— (void)setState: (int)value

— (int)state

Setting the Repeat Inter val

— (void)getPeriodicDelay: (float *)delay
interval:(float *)interval

— (void)setPeriodicDelay: (float)delay
interval: (float)interval

Setting the Titles
— (NSString *)alternateTitle
— (void)setAlternateTitle:(NSString *)aString
— (void)setTitle:(NSString *)aString
— (NSString *)title

Setting the Images
— (NSImage *)alternatel mage
— (NSImage *)image
— (NSCellimagePosition)imagePosition

— (void)setAlter natel mage: (NSImage *)anl mage

— (void)setl mage: (NSImage *)anlmage

Sets how the NSButton highlights and shows its state.

Sets the NSButton’s state to value (0 or 1).

Returns the NSButton's current state (O or 1).

Gets repeat parameters for continuous buttons.

Sets repeat parameters for continuous buttons.

Returns the button’s alternate title.
Makes aString the button’s alternate title.
Makes aString the button’s title.

Returns the button’s title.

Returns the button’s alternate image.
Returns the button’s image.

Returns the position of the button’s image.
Makes anlmage the alternate image.

Makes anlmage the button’sicon.

— (void)setl magePosition: (NSCelllmagePosition)aPosition

OpenStep Specification—10/19/94

Sets the position of the button’s image to aPosition.

Classes: NSButton

1-33

Modifying Graphic Attributes

— (BOOL)isBordered Returns whether the button has a bezeled border.
—(BOOL)isTransparent Returns whether the button is transparent.
— (void)setBor dered: (BOOL)flag Sets whether the button has a bezeled border.
— (void)setTransparent: (BOOL)flag Sets whether the button is transparent.
Displaying
— (void)highlight: (BOOL)flag Highlights (or unhighlights) the button according to flag.

Setting the Key Equivalent

— (NSString *)keyEquivalent Returns the button’s key equivalent.

— (unsigned int)keyEquivalentM odifier M ask Returns the mask indicating the possible modifier keys for
button’s key equivalent.

— (void)setK eyEquivalent: (NSString *)aKeyEquivalent
Makes aKeyEquivalent the button’'s key equivalent.

— (void)setK eyEquivalentM odifier M ask: (unsigned int)mask
Sets the mask that determines the possible modifier keys
for button’s key equivalent.

Handling Events and Action Messages
— (void)performClick: (id)sender Simulates the user’s clicking the button.

— (BOOL)performKeyEquivalent: (NSEvent *)anEvent
Simulates a mouse click, if the key in anEvent isright.

1-34 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSButtonCell

Inherits From:

Conforms To:

Declared In:

Class Description

NSActionCell : NSCell : NSObject

NSCoding, NSCopying (NSCell)
NSObject (NSObject)

AppKit/NSButtonCell.h

NSButtonCell is a subclass of NSActionCell used to implement the user interfaces of push buttons, switches, and
radio buttons. It can also be used for any other region of aview that's designed to send a message to atarget when
clicked. The NSButton subclass of NSControl uses a single NSButtonCell. To create groups of switches or radio
buttons, use an NSMatrix holding a set of NSButtonCells.

An NSButtonCell is atwo-state cell; it's either “off” or “on,” and can be configured to display the two states
differently, with a separate title and/or image for either state. The two states are more often referred to as“ normal”
and “aternate” An NSButtonCell’s state is also used asits value, so NSCell methods that set the value
(setIntValue: and so on) actually set the NSButtonCell’s stateto “on” if the value provided is non-zero (or non-null
for strings), and to “off” if the value is zero or null. Similarly, methods that retrieve the value return 1 for the “on”
or alternate state (an empty string in the case of stringValue), or 0 or NULL for the * off” or normal state. You can
also use NSCell's setState: and state methods to set or retrieve the state directly. After changing the state, send a
display message to show the NSButtonCell’s new appearance. (NSButton does this automatically.)

An NSButtonCell sendsits action messageto itstarget onceif itsview isclicked and it gets the mouse-down event,
but can a so send the action message continuously as long as the mouse is held down with the cursor inside the
NSButtonCell. The NSButtonCell can show that it's being pressed by highlighting in several ways—for example,
abordered NSButtonCell can appear pushed into the screen, or the image or title can change to an alternate form
while the NSButtonCell is pressed.

An NSButtonCell can also have akey equivalent (like amenu item). If the NSButtonCell is displayed in the key
window, the NSButtonCell gets the first chance to receive events related to key equivalents. Thisfeatureis used
quite often in modal panelsthat have an“OK” button containing the image that represents the Return key. Usually
an NSButtonCell displays a key equivalent asitsimage; if you ever set an image for the NSButtonCell, the key
equivalent remains, but doesn’t get displayed.

For more information on NSButtonCell’s behavior, see the NSButton and NSMatrix class specifications.

Exceptions

In itsimplementation of the compare: method (declared in NSCell), NSButtonCell raises
NSBadComparisonException if the other Cell argument is not of the NSButtonCell class.

OpenStep Specification—10/19/94 Classes: NSButtonCell 1-35

Setting the Titles

— (NSString *)alter nateTitle Returns the NSButtonCell’s alternate title (used while the
button isin the highlighted state).

— (void)setAlter nateTitle:(NSString *)aString Makes a copy of aString and usesit asthe NSButtonCell’'s
aternatetitle.

— (void)setFont: (NSFont *)fontObject Sets the NSFont used to draw the title.

— (void)setTitle: (NSString *)aString Makes acopy of aSring and usesit asthe NSButtonCell’s
title.

— (NSString *)title Returns the NSButtonCell’s title.

Setting the Images

— (NSImage *)alter natel mage Returns the NSButtonCell’s alternate image (used while
the button is in the highlighted state).

— (NSCelllmagePosition)imagePosition Returns the position of the NSButtonCell’simage.
— (void)setAlter natel mage: (NSImage *)anlmage Makes anlmage the alternate image.

— (void)setl magePosition: (NSCelllmagePosition)aPosition
Setstheposition of the NSButtonCell’simagein relationto

itstitle.
Setting the Repeat Inter val
— (void)getPeriodicDelay: (float *)delay Gets repeat parameters for continuous NSButtonCells.
interval:(float *)interval
— (void)setPeriodicDelay: (float)delay Sets repeat parameters for continuous NSButtonCells.
interval: (float)interval
Setting the Key Equivalent
— (NSString *)keyEquivalent Returns the NSButtonCell’s key equivalent.
— (NSFont *)keyEquivalentFont Returns the NSFont used to draw the key equivalent.
— (unsigned int)keyEquivalentM odifier M ask Returns the mask indicating the possible modifier keys for

NSButtonCell's key equivalent.

— (void)setK eyEquivalent: (NSString *)aKeyEquivalent
Sets the NSButtonCell’s key equivalent.

1-36 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setK eyEquivalentM odifier M ask: (unsigned in

— (void)setK eyEquivalentFont: (NSFont *)fontObj

— (void)setK eyEquivalentFont: (NSString * YfontName
size:(float)fontSze

Modifying Graphic Attributes

—(BOOL)isOpaque
—(BOOL)isTransparent
— (void)setTransparent: (BOOL)flag

Modifying Graphic Attributes

— (int)highlightsBy
— (void)setHighlightsBy:(int)aType
— (void)setShowsStateBy: (int)aType

— (void)setType: (NSButtonType)aType
— (int)showsStateBy

Simulating a Click

— (void)performClick: (id)sender

OpenStep Specification—10/19/94

t)mask
Sets the mask that determines the possible modifier keys
for NSButtonCell’s key equivalent.

Sets the NSFont used to draw the key equivalent.

Sets the NSFont and size used to draw the key equivalent.

Returns whether receiver is opague.
Returns whether the NSButtonCell is transparent.

Sets whether the NSButtonCell is transparent.

Returns how the NSButtonCell highlights when pressed.
Sets how the NSButtonCell highlights when pressed.

Sets how the NSButtonCell shows its alternate (pressed)
State.

Sets the NSButtonCell’s display behavior.

Returns how NSButtonCell shows its aternate (pressed)
state.

Simulates a user’s mouse click on the NSButtonCell.

Classes: NSButtonCell 1-37

NSCachedimageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCachedimageRep.h

Class Description

NSCachedlmageRep, a subclass of NSImageRep, defines an object that stores its source data as arendered image
in awindow, typically awindow that stays off-screen. The only data that's available for reproducing theimage is
the image itself. Thus an NSCachedimageRep differs from the other kinds of NSImageReps defined in the
Application Kit, all of which can reproduce an image from the information originally used to draw it. Instances of
this class are generally used indirectly, through an NSImage object.

Initializing an NSCachedlmageRep

— (id)initWithSize:(NSSize)aS ze
depth: (NSWindowDepth)aDepth
separate: (BOOL)separate
alpha:(BOOL)alpha

— (id)initWithwWindow: (NSWindow *)aWwndow
rect: (NSRect)aRect

Getting the Representation
— (NSRect)rect
— (NSWindow *)window

1-38 Chapter 1: Application Kit

Initializes a new NSCachedlmageRep for an image of the
specified size and depth. The separate argument
specifies whether the image will get its own unique
cache, instead of possibly sharing one with other
images. For best performance (although it's not
essential), the alpha argument should be set according
to whether the image will have a channel for
transparency information.

Initializes the new NSCachedlmageRep for an image to be
drawn in the rectangle aRect of the specified window.
This method retains aWndow.

Returns the rectangle where the image is cached.

Returns the NSWindow where the image is cached.

OpenStep Specification—10/19/94

NSCell

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSCell.h

Class Description

The NSCell class provides amechanism for displaying text or imagesin an NSView without the overhead of afull
NSView subclass. In particular, it provides much of the functionality of the NSText class by providing accessto a
shared NSText object used by all instances of NSCell in an application. NSCells are also extremely useful for
placing titles or images at various locations in a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their internal workings. For example,
NSSlider uses an NSSliderCell, NSTextField uses an NSTextFieldCell, and NSBrowser uses an NSBrowserCell.
Sending a message to the NSControl is often simpler than dealing directly with the corresponding NSCell. For
instance, NSControlstypically invoke updateCell: (causing the cell to be displayed) after changing acell attribute;
whereas if you directly call the corresponding method of the NSCell, the NSCell might not automatically display
itself again.

Some subclasses of NSControl (notably NSMatrix) allow multiple NSCells to be grouped and to act together in
some cooperative manner. Thus, with an NSMatrix, a group of radio buttons can be implemented without needing
an NSView for each button (and without needing an NSText object for the text on each button).

The NSCell class provides primitives for displaying text or an image, editing text, formatting floating-point
numbers, maintaining state, highlighting, and tracking the mouse. NSCell’s method

trackM ouse:inRect: of View:untilM ouseUp: supports the target object and action method used to implement
controls. However, NSCell implements target/action features abstractly, deferring the details of implementation to
subclasses of NSActionCell.

TheinitlmageCell: method isthe designated initializer for NSCellsthat display images. TheinitTextCell: method
isthe designated initializer for NSCells that display text. Override one or both of these methodsif you implement
asubclass of NSCell that performsits own initialization. If you need to use target and action behavior, you may
prefer to subclass NSActionCell, which provides the default implementation of this behavior.

For more information on how NSCell is used, see the NSControl class specification.

Initializing an NSCell
— (id)initlmageCell: (NSImage *)anlmage Initializes a new NSCell with the NSImage anlmage.
— (id)initTextCell: (NSString *)aString Initializes a new NSCell with title aString.

OpenStep Specification—10/19/94 Classes: NSCell 1-39

Determining Component Sizes
— (void)calcDr awl| nfo: (NSRect)aRect
— (NSSize)cdlSize
— (NSSize)cell SizeFor Bounds: (NSRect)aRect

— (NSRect)dr awingRectFor Bounds: (N SRect)theRect

Implemented by subclasses to recalcul ate drawing sizes.
Returns the minimum size needed to display the NSCell.

Returns the minimum size needed to display the NSCell.

Returns the rectangle the NSCell drawsin.

— (NSRect)imageRectFor Bounds: (NSRect)theRect Returns the rectangle that the cell’simageis drawn in.

— (NSRect)titleRect For Bounds: (NSRect)theRect

Setting the NSCell’s Type
— (void)setType: (NSCellI Type)aType
— (NSCdIType)type

Setting the NSCell’s State
— (void)setState: (int)value

—(int)state

Enabling and Disabling the NSCell
—(BOOL)isEnabled
— (void)setEnabled: (BOOL)flag

Setting the Image
— (NSImage *)image
— (void)setl mage: (NSImage *)anlmage

Setting the NSCell’s Value
— (double)doubleValue
— (float)floatValue
— (int)intValue
— (NSString *)stringValue

1-40 Chapter 1: Application Kit

Returns the rectangle that the cell’stitleisdrawn in.

Sets the NSCell’s type to aType.
Returns the NSCell’s type.

Sets the state of the NSCell to value (0 or 1).
Returns the state of the NSCell (0 or 1).

Returns whether the NSCell reacts to mouse events.

Sets whether the NSCell reacts to mouse events.

Returns the NSCell’s image.

Makes anlmage the NSCell’simage.

Returns the NSCell’s value as a double.
Returnsthe NSCell’s value as afloat.
Returnsthe NSCell’s value as an int.

Returns the NSCell’s value as a string.

OpenStep Specification—10/19/94

— (void)setDoubleValue: (double)aDouble
— (void)setFloatVValue: (float)aFl oat

— (void)setI ntValue: (int)anint

— (void)setStringValue: (NSString *)aString

Interacting with Other NSCells
— (void)takeDoubleValueFrom: (id)sender

— (void)takeFloatValueFrom: (id)sender
— (void)takel ntValueFrom: (id)sender
— (void)takeStringValueFrom: (id)sender

Modifying Text Attributes
— (NSTextAlignment)alignment
— (NSFont *)font
— (BOOL)isEditable
—(BOOL)isSelectable
—(BOOL)isScrollable
— (void)setAlignment: (NSTextAlignment)mode
— (void)setEditable: (BOOL)flag
— (void)setFont: (NSFont *)fontObject

— (void)setSelectable: (BOOL)flag
— (void)setScrollable:(BOOL)flag

Sets the NSCell’s value to aDouble.
Sets the NSCell’s value to aFloat.
Sets the NSCell’s value to anint.

Sets the NSCell’s value to a copy of aString.

Sets the NSCell’s value to sender’s doubl e floating-point
value.

Sets the NSCell’s value to sender’s floating-point val ue.
Sets the NSCell’s value to sender’s integer value.
Setsthe NSCell’s value to sender’s string value.

Returns the alignment of text in the NSCell.

Returns the Font used to display text in the NSCell.
Returns whether the NSCell’s text is editable.
Returns whether the NSCell’stext is selectable.
Returns whether the NSCell scrollsto follow typing.
Sets the alignment of text in the NSCell to mode.
Sets whether the NSCell’stext is editable.

Sets the Font used to display text in the NSCell to
fontObject.

Sets whether the NSCell’stext is selectable.
Sets whether the NSCell scrollsto follow typing.

— (NSText *)setUpFieldEditor Attributes: (NSText *)textObject

— (void)setWraps: (BOOL)flag
— (BOOL)wraps

OpenStep Specification—10/19/94

Sets NSText parameters for the field editor. (See the
documentation for NSText.)

Sets whether the NSCell’s text is word-wrapped.
Returns whether the NSCell’s text is word-wrapped.

Classes: NSCell 1-41

Editing Text

— (void)editWithFrame: (NSRect)aRect Allows text editing in response to a mouse-down event.
inView:(NSView *)control View
editor: (NSText *)textObject
delegate: (id)anObject
event: (NSEvent *)theEvent

— (void)endEditing: (NSText *)textObject Ends any text editing occurring in the NSCell.

— (void)selectWithFrame: (NSRect)aRect Allows text selection in response to a mouse-down event.
inView: (NSView *)control View
editor:(NSText *)textObject
delegate: (id)anObject
start:(int)selStart
length: (int)selLength

Validating Input
—(int)entryType Returnsthe type of datathe user can typeinto the NSCell.
— (BOOL)isEntryAcceptable: (NSString *)aString Returns whether aString is acceptable for the entry type.
— (void)setEntryType: (int)aType Sets the type of data the user can typeinto the NSCell.

Formatting Data

— (void)setFloatingPointFor mat: (BOOL)autoRange Sets the display format for floating-point values.
left: (unsigned int)leftDigits
right:(unsigned int)rightDigits

Modifying Graphic Attributes

—(BOOL)isBezeled Returns whether the NSCell has a bezeled border.
—(BOOL)isBordered Returns whether NSCell has a plain border.

— (BOOL)isOpaque Returns whether the NSCell is opague.

— (void)setBezeled: (BOOL)flag Sets whether the NSCell has a bezeled border.

— (void)setBor dered: (BOOL)flag Sets whether the NSCell has a plain border.

1-42 Chapter 1. Application Kit OpenStep Specification—10/19/94

Setting Parameters

— (int)cellAttribute: (NSCell Attribute)aParameter
Returns various flag values.

— (void)setCellAttribute: (NSCell Attribute)aParameter
to: (int)value Sets various NSCell flags.

Displaying

— (NSView *)controlView Implemented by subclasses to return the NSView last

drawn in (normally an NSControl).

— (void)drawl nterior WithFrame: (NSRect)cellFrame Draws the area within the NSCell’s border in control View.
inView: (NSView *)control View

— (void)drawWithFrame: (NSRect)cellFrame Draws the entire NSCell in control View.
inView: (NSView *)control View

— (void)highlight: (BOOL)lit
withFrame: (NSRect)cellFrame
inView:(NSView *)control View

If litis YES, highlights the NSCell in control View,
otherwise unhighlights.

— (BOOL)isHighlighted

Target and Action
— (SEL)action
—(BOOL)isContinuous
— (int)sendActionOn: (int)mask
— (void)setAction: (SEL)aSel ector
— (void)setContinuous: (BOOL)flag
— (void)setTar get: (id)anObject

— (id)tar get

Assignhing a Tag
— (void)setTag: (int)anint

— (int)tag

OpenStep Specification—10/19/94

Returns whether the NSCell is highlighted.

Implemented by subclasses to return the action method.
Returns whether the NSCell continuously sends the action.
Determines when the action is sent while tracking.
Implemented by subclasses to set the action method.

Sets whether the NSCell continuously sends the action.
Implemented by subclasses to set the target object.

Implemented by subclasses to return the target object.

Implemented by subclasses to set an identifier tag.

Implemented by subclasses to return the identifier tag.

Classes: NSCell 1-43

Handling Keyboard Alternatives

— (NSString *)keyEquivalent

Tracking the Mouse

+ (BOOL)prefersTrackinguntilM ouseUp

— (BOOL)continueTracking: (NSPoint)lastPoint
at: (NSPoint)currentPoint
inView:(NSView *)control View

— (int)mouseDownFlags

— (void)getPeriodicDelay: (float *)delay
interval:(float *)interval

— (BOOL)startTrackingAt: (NSPoint)startPoint
inView:(NSView *)control View

— (void)stopTracking: (NSPoint)lastPoint
at: (NSPoint)stopPoint
inView: (NSView *)control View
mousel sUp: (BOOL)flag

— (BOOL)trackM ouse: (NSEvent *)theEvent
inRect: (NSRect)cellFrame
of View: (NSView *)control View
untilMouseUp: (BOOL)flag

Managing the Cursor

— (void)resetCur sor Rect: (NSRect)cellFrame
inView: (NSView *)control View

Comparing to Another NSCell

— (NSComparisonResult)compar e: (id)other Cell

1-44 Chapter 1. Application Kit

Implemented by subclasses to return a key equivalent.

Returns NO, so tracking stops when the mouse |eaves the
NSCeéll; subclasses may override.

Returns whether tracking should continue based on
lastPoint and currentPoint within control View.

Returns the event flags set at the start of mouse tracking.

Returns repeat values for continuous sending of the action.

Determines whether tracking should begin based on
startPoint within control View.

Allowsthe NSCell to updateitself to end tracking, based on
lastPoint and stopPoint within controlView; flag is YES
if this method was invoked because the mouse went up.

Tracks the mouse, returning YES if the mouse goes up
whilein cellFrame. This method is usually invoked by
an NSControl’s mouseDown: method, which passes
the mouse-down event in theEvent. If flag is YES, the
method keeps tracking until the mouse goes up;
otherwise it tracks until the mouse leaves cellFrame.

Sets text NSCells to show the |-beam cursor.

Compares the string values of this cell and otherCell
(which must be akind of NSCell). Raises
NSBadComparisonException if otherCell is not of the
NSCell class.

OpenStep Specification—10/19/94

Using the NSCell to Represent an Object
— (id)representedObj ect Returns the object that the receiver represents, if any.

— (void)setRepresentedObj ect: (id)anObject Creates an association between the receiver and anObject.
anObject will be retained, released, archived, and
unarchived whenever the receiver is. If another cell is
already associated with anObject, that association is
broken, and the receiver is associated with the object.

OpenStep Specification—10/19/94 Classes: NSCell 1-45

NSClipView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSClipView.h

Class Description

An NSClipView object lets you scroll a document that may be larger than the NSClipView’s frame rectangle,
clipping the visible portion of the document to the frame. You don’'t normally use the NSClipView class directly;
it's provided primarily as the scrolling machinery for the NSScrollView class. However, you might use the
NSClipView class to implement a class similar to NSScrollView.

The document, which must bean NSView, is called the NSClipView’s document view. An NSClipView’sdocument
view, which is set through the setDocumentView: method, isthe NSClipView's only subview. You can set the
cursor that's displayed when the mouse enters an NSClipView's frame (in other words, when it’s poised over the
document view) through the setDocumentCur sor: method.

When the NSClipView isinstructed to scroll its document view, it normally copies that portion of the document
view that's visible both before and after the scrolling, so that this part won't need to be redrawn from scratch.
However, you can turn off this behavior and force the entire visible area to be redrawn by sending the NSClipView
a setCopiesOnScroll:NO message.

After scrolling, the NSClipView sendsitself a setNeedsDisplayl nRect: message to indicate that some part of the
document view should be displayed again. The argument to this message is the freshly exposed area of the
document view, unless the NSClipView received a setCopiesOnScroll:NO message, in which case the argument
istheentire visible area.

The NSClipView sendsits superview (usually an NSScrollView) areflectScrolledClipView: message whenever
the relationship between the NSClipView and the document view has changed. Thisallowsthe superview to update
itself to reflect the change—for example, the NSScrollView class uses this method to change the position of its
scrollers when the user causes the document to autoscroll.

Managing the Document V iew

— (NSRect)documentRect Returns the document rectangle.

— (id)documentView Returns the NSClipView’s document view.

— (NSRect)documentVisibleRect Getsthe visible portion of the document view.

— (void)setDocumentView: (NSView *)aView Makes aView the NSClipView's document view.

1-46 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the Cursor
—(NSCursor *)documentCur sor Returns the cursor for the document view.

— (void)setDocumentCur sor : (NSCursor *)anObject Sets the cursor for the document view.

Setting the Background Color
— (NSColor *)backgroundColor Returns the NSClipView's background color.
— (void)setBackgroundColor : (NSColor *)color Sets the NSClipView's background color.

Scrolling
— (BOOL)autoscroll: (NSEvent *)theEvent Scrollsin response to mouse-dragged events.

— (NSPoint)constrainScr ol Point: (NSPoint)newOrigin
Prevents scrolling to an undesirable position.

— (BOOL)copiesOnScrall Indicates whether the visible portions of the document
view are copied when scrolling occurs. If not, the
document view is responsible for redrawing the entire
visible portion. The default is YES.

— (void)scroll ToPoint: (NSPoint)newOrigin Lowest-level unconstrained scrolling routine.
— (void)setCopiesOnScroll: (BOOL)flag Sets how the visible areas are redrawn.

Responding to a Changed Frame

— (void)viewFrameChanged: (NSNotification *)notification
Notification that the document view’s frame has changed.

OpenStep Specification—10/19/94 Classes: NClipView 1-47

NSCoder Additions

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSColor.h

Class Description

The Application Kit addsthis method to the Foundation Kit's NSCoder class. This method becomes part of the class
for all applications that use the Application Kit, but not for applications that don't.

Converting an Archived NXColor to an NSColor

— (NSColor *)decodeNX Color Returns an autoreleased NSColor object equivalent to the
archived NXColor structure. This method is needed to
read colors from archives that were created by
pre-OpenStep versions of NEXTSTEPR.

1-48 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSColor

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSColor.h

An NSColor represents acolor. The color can be agrayscale value and can include al pha (opacity) information. By
sending a set message to an NSColor instance, you set the color for the current PostScript drawing context. This
causes subsequently drawn graphics to have the color represented by the NSColor instance.

A color isdefined in some particular color space. A color space consists of aset of dimensions—such asred, green,
and bluein the case of RGB space. Each point in the space represents a unique color, and the point’slocation along
each dimension is called a component. An individual color isusually specified by the numeric values of its
components, which range from 0.0 to 1.0. For instance, a pure red is specified in RGB space by the component
values 1.0, 0.0, and 0.0.

Some color spaces include an al pha component, which defines the color’s opacity. An aphavaue of 1.0 means
completely opaque, and 0.0 means completely transparent. The a pha component isignored when the color is used
on adevice that doesn’t support apha, such as a printer.

There are three kinds of color space in OpenStep:
» Device-dependent. This meansthat a given color might not look the same on different displays and printers.

» Device-independent, also known as calibrated. With this sort of color space, a given color should look the
same on all devices.

« Named. The “named color space” has components that aren’t numeric values, but simply names in various
catalogs of colors. Named colors come with lookup tables that provide the ability to generate the correct
color on agiven device.

OpenStep includes six different color spaces, referred to by these enumeration constants:
NSDeviceCMYKColorSpace Cyan, magenta, yellow, black, and alpha components
NSDeviceWhiteColorSpace ~ White and alpha components

NSDeviceRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and al pha components

NSCalibratedWhiteColorSpace White and alpha components

NSCalibratedRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and al pha components

NSNamedCol orSpace Catalog name and color name components

OpenStep Specification—10/19/94 Classes: NSColor 1-49

(Color spaces whose names start with “NSDevice” are device-dependent; those with “NSCalibrated” are
device-independent.)

There'susually no need to retrieve the individual components of a color, but when needed, you can either retrieve
aset of components (using such methods as getRed: green:blue:alpha:) or an individual component (using such
methods as redComponent). However, it'sillegal to ask an NSColor for components that aren’t defined for its
color space. You can identify the color space by sending a color SpaceName method to the NSColor. If you need
to ask an NSColor for components that aren’t in its color space (for instance, when you’'ve gotten the color from
the color panel), first convert the color to the appropriate color space using the color UsingColor SpaceName:
method. If the color isalready in the specified color space, you get the same color back; otherwise you get a
conversion that's usually lossy or that’s correct only for the current device. You might also get back nil if the
specified conversion can't be done.

Subclasses of NSColor need to implement the color SpaceName and set methods, aswell asthe methodsthat return
the components for that color space and the methods in the NSCoding protocol. Some other methods—such as
color WithAlphaComponent:, isEqual:, and color UsingColor SpaceName: device:—may aso be implemented
if they make sense for the color space. M utable subclasses (if any) should additionally implement copyWithZone:
to provide atrue copy.

Creating an NSColor from Component Values

+ (NSColor *)color WithCalibratedHue: (float)hue Creates and returns a new NSColor whose color spaceis

saturation: (float)saturation NSCalibratedRGBCol orSpace, whose opacity valueis
brightness: (float)brightness alpha, and whose components in HSB space would be
alpha: (float)alpha hue, saturation, and brightness. All valuesarelegal, but

values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

+ (NSColor *)colorWithCalibratedRed: (float)red Creates and returns a new NSColor whose color spaceis

green: (float)green NSCalibratedRGBColorSpace, whose opacity valueis
blue: (float)blue alpha, and whose RGB components are red, green, and
alpha: (float)alpha blue. All valuesarelegal, but valueslessthan 0.0 are set

to 0.0, and values greater than 1.0 are set to 1.0.

+ (NSColor *)color WithCalibratedWhite: (float)white
alpha: (float)alpha Creates and returns a new NSColor whose color spaceis
NSCalibratedWhiteCol orSpace, whose opacity valueis
alpha, and whose grayscale value is white. All values
are legal, but values less than 0.0 are set to 0.0, and
values greater than 1.0 are set to 1.0.

+ (NSCaolor *)color WithCatalogName: (NSString *)listName
color Name: (NSString *)colorName Creates and returns a new NSColor whose color spaceis
NSNamedCol orSpace, by finding the color named
colorName in the catalog named listName.

1-50 Chapter 1: Application Kit OpenStep Specification—10/19/94

+ (NSColor *)color WithDeviceCyan: (float)cyan
magenta: (float) magenta
yellow: (float)yellow
black: (float)black
alpha: (float)alpha

+ (NSColor *)color WithDeviceHue: (float)hue
satur ation: (float)saturation
brightness: (float)brightness
alpha: (float)alpha

+ (NSColor *)color WithDeviceRed: (float)red
green: (float)green
blue: (float)blue
alpha: (float)al pha

+ (NSColor *)color WithDeviceW hite: (float)white
alpha: (float)alpha

Creating an NSColor With Preset Components

+ (NSColor *)blackColor

+ (NSColor *)blueColor

+ (NSColor *)brownColor

+ (NSColor *)clear Color

+ (NSColor *)cyanColor

OpenStep Specification—10/19/94

Creates and returns a new NSColor whose color spaceis
NSDeviceCMY K ColorSpace, whose opacity valueis
alpha, and whose CMY K components are cyan,
magenta, yellow, and black. All values are legal, but
values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

Creates and returns a new NSColor whose color spaceis
NSDeviceRGBCol orSpace, whose opacity value is
alpha, and whose components in HSB space would be
hue, saturation, and brightness. All valuesarelegal, but
values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

Creates and returns a new NSColor whose color spaceis
NSDeviceRGBCol orSpace, whose opacity value is
alpha, and whose RGB components are red, green, and
blue. All valuesarelegal, but valueslessthan 0.0 are set
to 0.0, and values greater than 1.0 are set to 1.0.

Creates and returns a new NSColor whose color spaceis
NSDeviceWhiteColorSpace, whose opacity valueis
alpha, and whose grayscale value is white. All values
are legal, but values less than 0.0 are set to 0.0, and
values greater than 1.0 are set to 1.0.

Returns an NSColor in NSCalibratedWhiteCol orSpace
whose grayscale value is 0.0 and whose alphavalueis
1.0.

Returns an NSColor in NSCalibratedRGB ColorSpace
whose RGB valueis0.0, 0.0, 1.0 and whose al phavalue
is1.0.

Returns an NSColor in NSCalibratedRGBCol orSpace
whose RGB valueis0.6, 0.4, 0.2 and whose alphavalue
is1.0.

Returns an NSColor in NSCalibratedWhiteCol orSpace
whose grayscale and a pha values are both 0.0.

Returns an NSColor in NSCalibratedRGB ColorSpace
whose RGB valueis0.0, 1.0, 1.0 and whose al phavalue
is1.0.

Classes: NSColor 1-51

+ (NSColor *)darkGrayColor

+ (NSColor *)grayColor

+ (NSColor *)greenColor

+ (NSColor *)lightGrayColor

+ (NSColor *)magentaColor

+ (NSColor *)orangeColor

+ (NSColor *)purpleColor

+ (NSColor *)redColor

+ (NSColor *)whiteColor

+ (NSColor *)yellowColor

Ignoring Alpha Components

+ (BOOL)ignoresAlpha

+ (void)setl gnoresAlpha: (BOOL)flag

1-52 Chapter 1: Application Kit

Returns an NSColor in NSCalibratedwWhiteCol or Space
whose grayscale value is 1/3 and whose alphavalueis
1.0.

Returns an NSColor in NSCalibratedWhiteCol orSpace
whose grayscale valueis 0.5 and whose alphavaueis
1.0.

Returns an NSColor in NSCalibratedRGBCol orSpace
whose RGB valueis0.0, 1.0, 0.0 and whose alphavalue
is1.0.

Returns an NSColor in NSCalibratedwWhiteCol or Space
whose grayscale value is 2/3 and whose alphavalueis
1.0.

Returns an NSColor in NSCalibratedRGBCol orSpace
whose RGB valueis 1.0, 0.0, 1.0 and whose alphavalue
is1.0.

Returns an NSColor in NSCalibratedRGBCol orSpace
whose RGB valueis 1.0, 0.5, 0.0 and whose alphavalue
is1.0.

Returns an NSColor in NSCalibratedRGB ColorSpace
whose RGB valueis0.5, 0.0, 0.5 and whose al phavalue
is1.0.

Returns an NSColor in NSCalibratedRGBCol orSpace
whose RGB valueis 1.0, 0.0, 0.0 and whose alphavalue
is1.0.

Returns an NSColor in NSCalibratedWhiteCol orSpace
whose grayscale and a pha values are both 1.0.

Returns an NSColor in NSCalibratedRGB ColorSpace
whose RGB valueis 1.0, 1.0, 0.0 and whose a phavalue
is1.0.

Returns Y ES (the default) if the application hidesthe color
panel’s opacity dider and setsimported colors' alpha
valuesto 1.0.

If flagis YES, no opacity slider is displayed in the color
panel, and colors dragged in or pasted have their alpha
values set to 1.0.

OpenStep Specification—10/19/94

Retrieving a Set of Components

— (void)getCyan: (float *)cyan
magenta: (float *)magenta
yellow: (float *)yellow
black: (float *)black
alpha: (float *)alpha

— (void)getHue: (float *)hue
saturation: (float *)saturation
brightness: (float *)brightness
alpha: (float *)alpha

— (void)getRed: (float *)red
green:(float *)green
blue: (float *)blue
alpha: (float *)alpha

— (void)getWhite: (float *)white
alpha: (float *)alpha

OpenStep Specification—10/19/94

Returnsthe CMYK and alpha valuesin the respective
arguments. If NULL is passed in as an argument, the
method doesn’t set that value. It's an error if the
receiver isn'taCMYK color.

Returns the HSB and alpha values in the respective
arguments. If NULL is passed in as an argument, the
method doesn't set that value. It's an error if the
receiver isn'taCMYK color.

Returns the RGB and alpha values in the respective
arguments. If NULL is passed in as an argument, the
method doesn’t set that value. It's an error if the
receiver isn'taCMYK color.

Returns the grayscale and a pha values in the respective
arguments. If NULL is passed in as an argument, the
method doesn’t set that value. It'san error if thereceiver
isn'taCMYK color.

Classes: NSColor 1-53

Retrieving Individual Components
— (float)alphaComponent Returns the alpha (opacity) component (1.0 by default).

— (float)black Component Returns the black component. It's an error if the receiver
isn'taCMYK color.

— (float)blueComponent Returns the blue component. It's an error if the receiver
isn't an RGB color.

— (float)brightnessComponent Returns the brightness component of the HSB color
equivalent to the receiver. It's an error if the receiver
isn't an RGB color.

— (NSString *)catalogNameComponent Returnsthe name of the catal og containing thiscolor, or nil
if the receiver’s color space isn't NSNamedCol or Space.

— (NSString *)color NameComponent Returns the name of this color, or nil if the receiver’s color
space isn't NSNamedCol orSpace.

— (float)cyanComponent Returns the cyan component. It's an error if the receiver
isn'taCMYK color.

— (float)greenComponent Returns the green component. It's an error if the receiver
isn't an RGB color.

— (float)hueComponent Returns the hue component of the HSB color equivalent to
thereceiver. It'san error if the receiver isn't an RGB
color.

— (NSString *)localizedCatalogNameComponent Like catalogNameComponent, but returns alocalized

string.

— (NSString *)localizedColor NameComponent Like colorNameComponent, but returns alocalized
string.

— (float)magentaComponent Returnsthe magentacomponent. It'san error if thereceiver
isntaCMYK color.

— (float)redComponent Returnsthe red component. It'san error if thereceiver isn't
an RGB color.

— (float)satur ationComponent Returns the saturation component of the HSB color

equivalent to the receiver. It's an error if the receiver
isn't an RGB color.

— (float)whiteComponent Returns the white component. It's an error if the receiver
isn't agrayscale color.

— (float)yellowComponent Returns the yellow component. It's an error if the receiver
isn'taCMYK color.

1-54 Chapter 1: Application Kit OpenStep Specification—10/19/94

Converting to Another Color Space
— (NSString *)color SpaceName Returns the name of the NSColor’s color space.

— (NSCaolor *)color UsingColor SpaceName: (NSString *)color Space

Returns a newly created NSColor whose color isthe same
asthe receiver’s, except that the new NSColor isin the
color space named color Space. This method calls
color UsingColor SpaceName: device: with the current
device, indicating that the color is appropriate for the
current device (the current window if drawing, or the
current printer if printing).

— (NSColor *)color UsingColor SpaceName: (NSString *)col or Space
device:(NSDictionary *)deviceDescription Returns a newly created NSColor whose color is the same
asthe receiver’'s, except that the new NSColor isin the
color space named color Space and is specific to the
device described by deviceDescription.

Changing the Color

— (NSCaolor *)blendedColor WithFraction: (float)fraction
ofColor:(NSColor *)aColor Returns anewly created NSColor in

NSCalibratedRGBCol orSpace whose component
values are aweighted sum of the receiver's and
aColor’s. The method convertsaColor and acopy of the
receiver to RGB, and then sets each component of the
returned color to fraction of aColor’s value plus
1 —fraction of the receiver’s. If the colors can't be
converted to NSCalibratedRGBCol orSpace, nil is
returned.

— (NSColor *)color WithAlphaComponent: (float)al pha
Returns a newly created NSColor that has the same color
space and component values as the receiver, except that
its alpha component is alpha. If the receiver’s color
space doesn’'t include an al pha component, the receiver
is returned.

Copying and Pasting

+ (NSColor *)color FromPasteboar d: (N SPasteboard *)pasteBoard
Returns the NSColor currently on the pasteboard, or nil if
the pasteboard doesn’t contain color data. The returned
color’'s apha component is set to 1.0 if ignoresAlpha
returns YES.

OpenStep Specification—10/19/94 Classes: NSColor 1-55

— (void)writeToPasteboar d: (NSPasteboard *)pasteBoard
Writes the receiver’s data to the pasteboard, unless the
pasteboard doesn’t support color data(inwhich casethe
method does nothing).

Drawing
— (void)drawSwatchl nRect: (NSRect)rect Draws the current color in the rectangle rect. Subclasses
adorn the rectangle in some manner to indicate the type
of color. This method is invoked by color wells,
swatches, and other user-interface objects that need to
display colors.
— (void)set Setsthe color of subsequent PostScript drawing to the color

that thereceiver represents. If the applicationisdrawing
to the screen rather than printing, this method also sets
the current drawing context’s alpha value to the value
returned by alphaComponent.

1-56 Chapter 1. Application Kit OpenStep Specification—10/19/94

NSColorList

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: AppKit/NSColorList.h

Class Description

Instances of NSColorList are used to manage named lists of NSColors. NSCol orPanel’slist-mode col or picker uses
instances of NSColorL.ist to represent any lists of colors that come with the system, aswell as any lists created by
the user. An application can use NSColorList to manage document-specific color lists, which may be added to an
application’s NSColorPanel using its attachColor List: method.

An NSColorList issimilar to adictionary object: An NSColor is added to, looked up in, and removed from the list
by specifying its key, which isan NSString. In addition, colors can beinserted at specified positionsinthelist. The
list itself has a name, specified when you create the object (using either initWithName: or
initWithName:fromFile:).

An NSColorList saves and retrievesits colors from files with the extension “ .clr” in directories defined by a
standard search path. To access al the color listsin the standard search path, use the availableColor Lists method;
thisreturns an array of NSColorLists, from which you can retrieve the individual color lists by name.

NSColorList reads color list filesin several different formats; it saves color lists using the archiver API.

Initializing an NSColorList

— (id)initWithName: (NSString *)name Initializes and returns the receiver, registering it under the
specified name if the nameisn’t in use aready.
— (id)initWithName: (NSString *)name Initializes and returns the receiver, registering it under the
fromFile:(NSString *)path specified name if the nameisn't in use already. path

should be thefull path to thefilefor the color list; name
should be the name of the file for the color list (minus
the “.clr” extension).

Getting All Color Lists

+ (NSArray *)availableColorLists Returns an array of all NSColorLists found in the standard
color list directories. Color lists created at run time
aren’'tincluded in thislist unlessthey’re saved into one
of the standard color list directories.

OpenStep Specification—10/19/94 Classes: NSColorList 1-57

Getting a Color List by Name

+ (NSColorList *)color ListNamed: (NSString *)name
Searchesthe array that's returned by availableColorLists
and returns the NSColorList named name, or nil if no
such color list exists. name mustn’t include the “ .clr”

suffix.
— (NSString *)name Returns the name of the NSColorList.
Managing Colors by Key
— (NSArray *)allKeys Returns an array of NSString objects that contains al the

keys by which the NSColors are stored in the
NSColorList. The length of this array equalsthe
number of colors, and its contents are arranged
according to the ordering specified when the colors

were inserted.
— (NSCaolor *)color WithK ey: (NSString *)key Returns the NSColor associated with key, or nil if thereis
none.
— (void)insertColor: (NSColor *)color Inserts color at the specified location in the list (whichis
key:(NSString *)key numbered starting with 0). If the list already contains a
atl ndex: (unsigned)location color with the same key at a different location, it's

removed from the old location. This method posts the
NSColorListChangedNotification notification to the
default notification center. Raises
NSColorListNotEditableException if the color listis
not editable. This method posts the
NSColorListChangedNotification notification to the
default notification center.

— (void)removeColor WithKey: (NSString *)key Removes the color associated with key from thelist. This
method does nothing if the list doesn’t contain the key.
This method posts the
NSColorListChangedNotification notification to the
default notification center. Raises
NSColorListNotEditableException if the color listis

not editable.
— (void)setColor:(NSColor *)aColor Associates the specified NSColor with the key key. If the
forKey:(NSString *)key list already contains key, this method sets the

corresponding color to aColor; otherwise, it inserts
aColor at theend of thelist.

1-58 Chapter 1: Application Kit OpenStep Specification—10/19/94

Editing
— (BOOL)isEditable

Writing and Removing Files

— (BOOL)writeToFile:(NSString *)path

— (void)removeFile

OpenStep Specification—10/19/94

ReturnsY ESif the color list can be modified. Thisdepends
on the source of thelist: If it came from a
write-protected file, this method returns NO.

If pathisadirectory, savesthe NSColorList in afile named
listname.clr (wherelistnameisthe namewith which the
NSColorList wasinitialized). If path includes afile
name, this method savesthefile under that name. If path
isnil, this method saves the file as listname.clr in the
standard location. Returns Y ES upon success.

Deletes the file from which the list was created, unless the
user doesn’t own the color list. Thereceiver isremoved
from the list of available colors, but isn't released.

Classes: NSColorList 1-59

NSColorPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSColorPanel.h

Class Description

NSColorPanel provides a standard user interface for selecting color in an application. It provides a number of
standard color selection modes, and, with the NSColorPickingDefault and NSCol orPickingCustom protocaols,
allowsan application to add its own color selection modes. It allowsthe user to save swatches containing frequently
used colors. Once set, these swatches are displayed by NSColorPanel in any application whereit isused, giving the
user color consistency between applications. NSColorPanel enables usersto capture acolor anywhere onthe screen
for useintheactive application, and allows dragging colorsfromitself into viewsin an application. NSColorPandl’s
action message is sent to the target object when the user changes the current color.

An application has only one instance of NSColorPanel, the shared instance. Invoking the sharedColor Panel:
method returns the shared instance of NSColorPanel, instantiating it if necessary. You can also initialize an
NSColorPanel for your application by invoking NSApplication’s or der FrontColor Panel method.

You can put NSColorPanel in any application created with Interface Builder by adding the “Colors...” item from
the Menu palette to the application’s menu.

Color Mask and Color Modes

The color mask determines which of the color modes are enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSCol orPanel AllModesMask represents the logical OR of the other
color mask constants: it causes the NSColorPanel to display all standard color pickers. When initializing a new
instance of NSColorPanel, you can logically OR any combination of color mask constants to restrict the available
color modes.

Mode Color Mask Constant
Grayscale-Alpha NSColorPanel GrayModeM ask
Red-Green-Blue NSColorPanel RGBM odeM ask

Cyan-Yellow-Magenta-Black NSColorPanel CMY KM odeMask
Hue-Saturation-Brightness NSColorPanelHSBM odeM ask

TIFF image NSCol orPanel CustomPal etteM odeM ask
Custom color lists NSColorPanel ColorListModeMask
Color whedl NSCol orPanel Wheel M odeM ask

All of the above NSColorPanel AllModesM ask

1-60 Chapter 1: Application Kit OpenStep Specification—10/19/94

The NSColorPanel’s color mode mask is set using the class method setPicker M ask:. The mask must be set before
creating an application’s instance of NSColorPanel.

When an application’ s instance of NSColorPanel is masked for more than one color mode, your program can set
its active mode by invoking the setM ode: method with a color mode constant as its argument; the user can set the
mode by clicking buttons on the panel. Here are the standard color modes and mode constants:

Mode Color Mode Constant
Grayscale-Alpha NSGrayM odeCol orPanel
Red-Green-Blue NSRGBM odeCol orPanel

Cyan-Yellow-Magenta-Black NSCMY KM odeColorPanel
Hue-Saturation-Brightness NSHSBM odeCol orPanel

TIFF image NSCustomPal etteM odeCol orPanel
Color lists NSColorListModeColorPanel
Color wheel NSWheel M odeCol orPanel

In grayscale-al pha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the user
adjusts colors by manipulating sliders. In the custom palette mode, the user can load a TIFF file into the
NSColorPanel, then select colorsfrom the TIFF image. In custom color list mode, the user can create and load lists
of named colors. The two custom modes provide NSPopUpLists for loading and saving files. Finally, color wheel
mode provides asimplified control for selecting colors. If acolor panel has been used, it useswhatever modeit was
in last as the default mode when NSCol orPanel AlIModesMask is used to initialize the NSColorPanel. Otherwise,
it uses color wheel mode.

Associated Classes and Protocols

The NSColorList class provides an API for managing custom color lists. The NSColorPanel methods
attachColorList: and detachColorList: let your application add and remove custom lists from the
NSColorPanel’s user interface.

The protocols NSColorPickingDefault and NSCol orPickingCustom provide an API for adding custom color
selection to the user interface. The NSColorPicker classimplements the NSColorPickingDefault protocol; you can
subclass NSCol orPicker and implement the NSCol orPickingCustom protocol in your subclass to create your own
user interface for color selection.

See also: NSColorList, NSColorPickingDefault, NSCol orPicker, NSCol orPickingDefault protocol,
NSColorPickingCustom protocol, NSColorWell

Creating the NSColorPanel
+ (NSColorPanel *)sharedColor Panel Createsif necessary and returns the shared NSCol orPanel.
+ (BOOL)sharedColor PanelExists Returns Y ESif the NSColorPanel has been created already.

Setting the NSColorPanel

+ (void)setPicker M ask: (int)mask Setsthe mask that determineswhich color selection modes
are available in the color pandl.

OpenStep Specification—10/19/94 Classes: NSColorPanel 1-61

+ (void)setPicker M ode: (int)mode
— (NSView *)accessoryView

—(BOOL)isContinuous

— (inthjmode

— (void)setAccessoryView: (NSView *)aView
— (void)setAction: (SEL)aSelector

— (void)setContinuous: (BOOL)flag

— (void)setM ode: (int)mode

— (void)setShowsAlpha: (BOOL)flag
— (void)setTar get: (id)anObject

— (BOOL)showsAlpha

Attaching a Color List
— (void)attachColorList:(NSColorList *)aColorList

— (void)detachColorList:(NSColorList *)aColorList

Setting Color

+(BOOL)dragColor:(NSColor **)aColor
withEvent: (NSEvent *)anEvent
fromView: (NSView *)sourceView

— (float)alpha

— (NSCaolor *)color
— (void)setColor: (NSColor *)aColor

1-62 Chapter 1: Application Kit

Sets the color picker mode.
Returns the accessory view, or nil if thereis none.

Returns YES if the NSColorPanel continuously sends the
action message to the target.

Returns the mode of the NSColorPanel.
Sets the accessory view to aView.
Sets the action message sent to the target.

Sets the NSColorPanel to continuously send the action
message to the target.

Sets the mode of the NSColorPanel.

Sets the NSColorPanel to show alpha values.

Sets the target of the NSColorPanel.

Returns YES if the NSColorPanel shows alpha values.

Adds the specified list of NSColorsto all the color pickers
in the color panel that display color lists.

Removes the specified list of NSColors from all the color
pickersin the color panel that display color lists.

Drags aColor into a destination view from sourceView.

Returns the NSColorPanel’s current alphavalue, or 1.0
(opaque) if the panel has no opacity dlider.

Returns the currently displayed color.

Sets the color to be displayed. This method posts the
NSCol orPanel ChangedNotification notification with
the receiving object to the default notification center.

OpenStep Specification—10/19/94

NSColorPicker

Inherits From: NSObject

Conforms To: NSColorPickingDefault
NSObject (NSObject)

Declared In: AppKit/NSColorPicker.h

Class Description

NSColorPicker is an abstract superclass that implements the NSCol orPickingDefault protocol. The
NSColorPickingDefault and NSColorPickingCustom protocols define away to add color pickers (custom user
interfaces for color selection) to the NSColorPanel. The simplest way to implement a color picker isto create a
subclass of NSColorPicker, instead of implementing the NSColorPickingDefault protocol in another kind of
object. (To add functionality, implement the NSCol orPickingCustom methods in your subclass.)

The NSColorPickingDefault protocol specification describes the detail s of implementing acolor picker and adding
it to your application’s NSColorPanel; you should ook therefirst for an overview of how NSColorPicker works.
This specification is provided to document the specific behavior of NSColorPicker’s methods.

Initializing an NSColorPicker

— (id)initWithPicker M ask: (int)JaMask Initializes the receiver for the specified mask and color
color Panel; (NSColorPanel *)colorPanel panel, caching the colorPanel value so it can later be
returned by the color Panel method.

Getting the Color Panel
— (NSColorPanel *)color Panel Returns the NSColorPanel that owns this NSCol orPicker.

Adding Button Images

— (void)insertNewButtonl mage: (NSlmage *)newlmage
in:(NSButtonCell *)newButtonCell Called by the color panel to insert a new image into the
specified cell. Override this method to customize
newlmage before insertion in newButtonCell.

OpenStep Specification—10/19/94 Classes: NSColorPicker 1-63

— (NSImage *)provideNewButtonl mage

Setting the Mode
— (void)setM ode: (intymode

Using Color Lists

— (void)attachColorList:(NSColorList *)colorList

— (void)detachColorList:(NSColorList *)colorList

Responding to a Resized View

— (void)viewSizeChanged: (id)sender

1-64 Chapter 1. Application Kit

Returns the button image for the color picker. The color

panel will place thisimage in the mode button that the
user uses to select this picker. (Thisisthe same image

that the color panel uses as an argument when sending

theinsertNewButtonl mage:in: message.) The default
implementation looks in the color picker’s bundle for a
TIFF file named after the color picker’s class, with the
extension ".tiff".

Does nothing. Override to set the color picker's mode.

Does nothing. Override to attach a color list to acolor

picker.

Does nothing. Override to detach a color list from a color

picker.

Does nothing. Override to respond to a size change.

OpenStep Specification—10/19/94

NSColorWell

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSColorWell.h

Class Description

NSColorWell is an NSControl for selecting and displaying a single color value. An example of an NSColorwWell
object (or smply color well) isfound in NSColorPanel, which uses a color well to display the current color
selection. NSColorWell is available from the Palettes panel of Interface Builder.

An application can have one or more active NSColorWells. You can activate multiple NSColorWells by invoking
the activate: method with NO as its argument. When a mouse-down event occurs on an NSColorWell’s border, it
becomes the only active color well. When a color well becomes active, it brings up the color panel also.

The mouseDown: method enables an instance of NSColorWell to send its color to another NSColorWell or any
other subclass of NSView that implements the NSDraggingDestination protocol.

See also: NSColorPanel (class)

Drawing
— (void)drawWelll nside: (N SRect)insi deRect Drawsthe colored areainside the color well at the location
specified by insideRect without drawing borders.
Activating
— (void)activate: (BOOL)exclusive Activates the NSColorWell, displays the Color panel, and
makes the NSCol orPanel’s current color the same asits
own. If exclusive is YES, deactivates any other
NSColorWells; if NO, keeps them active.
— (void)deactivate Deactivates the NSColorWell.
—(BOOL)isActive Returns YES if the NSColorWell is active.

OpenStep Specification—10/19/94 Classes: NSColorWell 1-65

Managing Color

— (NSColor *)color Returns the color of the color well.
— (void)setColor:(NSColor *)color Sets the color of the well to color.
— (void)takeColor From: (id)sender Changes the color of the well to that of sender.

Managing Borders
—(BOOL)isBordered Indicates whether the color well is bordered.

— (void)setBor dered: (BOOL)bordered Places or removes a border, depending on bordered.

1-66 Chapter 1. Application Kit OpenStep Specification—10/19/94

NSControl

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSControl.h

Class Description

NSControl is an abstract superclass that provides three fundamental features for implementing user interface
devices. First, as a subclass of NSView, NSControl allows the on-screen representation of the device to be drawn.
Second, it receives and responds to user-generated events within its bounds by overriding NSResponder’'s
mouseDown: method and providing a position in the responder chain. Third, it implements the sendAction:to:
method to send an action message to the NSControl’s target object. Subclasses of NSControl defined in the
Application Kit are NSBrowser, NSButton (and its subclass NSPopUpButton), NSColorWell, NSMatrix (and its
subclass NSForm), NSScroller, NSSlider, and NSTextField.

Target and Action

Target objects and action methods provide the mechanism by which NSControls interact with other objectsin an
application. A target is an object that an NSControl has effect over. The target class defines an action method to
enableitsinstances to respond to user input. An action method takes only one argument: theid of the sender. The
sender may be either the NSControl that sends the action message or another object that the target should treat as
the sender. When it receives an action message, atarget can return messages to the sender requesting additional
information about its status. NSControl’s sendAction:to: asksthe NSApplication object, NSApp, to send an action
message to the NSControl’ starget object. The method used for thisisNSApplication’s sendAction:to:from:. You
can also set the target to nil and allow it to be determined at run time. When the target is nil, the NSApplication
object must ook for an appropriate receiver. It conductsits search in aprescribed order, by following the responder
chain until it finds an object that can respond to the message:

» Itbeginswith thefirst responder in the key window and follows nextResponder linksup theresponder chain
to the NSwindow object. After the NSWindow object, it tries the NSWindow’s del egate.

* If themain window is different from the key window, it then starts over with the first responder in the main
window and works itsway up the main window’s responder chain to the NSWindow object and its del egate.

» Next, it triesto respond itself. If the NSApplication object can't respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these methods
require that an NSControl have an associated subclass of NSCell that provides a target and an action, such as
NSActionCell and its subclasses.

OpenStep Specification—10/19/94 Classes: NSControl 1-67

Target objects and action methods demonstrate the close relationship between NSControls and NSCells. In most
cases, auser interface device consists of an instance of an NSControl subclass paired with one or more instances
of an NSCell subclass. Each implements specific details of the user interface mechanism. For example,
NSControl’s mouseDown: method sends atrackM ouse:inRect: of View:untilM ouseUp: message to an NSCell,
which handles subsequent mouse and keyboard events; an NSCell sends an NSControl asendAction:to: message
in response to particular events. NSControl’s drawRect: method isimplemented by sending a
drawWithFrame:inView: message to the NSCell. As another example, NSControl provides methods for setting
and formatting its contents; these methods send corresponding messages to NSCell, which actually owns the
contents.

See the NSActionCell class specification for more on the implementation of target and action behavior.
Changing the NSCell Class

Since NSControl usesthe NSCell classto implement most of its actual functionality, you can usually implement a
unique user interface device by creating a subclass of NSCell rather than NSControl. Asan example, let’s say you
want all your application’s NSSlidersto have atype of cell other than the generic NSSliderCell. First, you create a
subclass of NSCell, NSActionCell, or NSSliderCell. (Let’s call it MyCellSubclass.) Then, you can simply invoke
NSSlider's setCellClass: class method:

[NSSlider setCellClass: [MyCellSubclass classl];
All NSSliders created thereafter will use MyCellSubclass, until you call setCellClass: again.

If you want to create generic NSSliders (ones that use NSSliderCell) in the same application as the customized
NSSliders that use MyCellSubclass, there are two possible approaches. Oneisto invoke setCellClass: as above
whenever you're about to create a custom NSSlider, resetting the cell classto NSSliderCell afterwards. The other
approach isto create a custom subclass of NSSlider that automatically uses MyCell Subclass, as explained bel ow.

Creating New NSControls

If you create acustom NSControl subclassthat uses acustom subclass of NSCell, you should override NSControl’s
cellClass method:

+ (Class) cellClass

{

return [MyCellSubclass class];

}

NSControl’sinitWithFrame: method will use the return value of cellClass to alocate and initialize an NSCell of
the correct type.

1-68 Chapter 1. Application Kit OpenStep Specification—10/19/94

If youwant to be ableto changethetype of cell that your subclass uses (without changing thetypethat its superclass
uses), override setCellClass: to store the NSCell subclassin aglobal variable, and modify cellClass to return that
variable:

static id myStoredCellClass;

+ setCellClass:classId

{

myStoredCellClass = classId;
}
+ (Class) cellClass
{

return (myStoredCellClass ? myStoredCellClass : [MyCellSubclass class]);

}

An NSControl subclass doesn’t have to use an NSCell subclass to implement itself; NSScroller and NSColorWell
are examples of NSControls that don’t. However, such subclasses have to take care of details that NSCell would
otherwise handle. Specifically, they have to override methods designed to work with an NSCell. What's more, the
lack of an NSCell means you can’t make use of NSMatrix—a subclass of NSControl designed specifically for
managing multi-cell arrays such as radio buttons.

Override the designated initializer (initWithFrame:) if you create a subclass of NSControl that performsits own
initialization.
Initializing an NSControl Object

— (id)initWithFrame: (NSRect)frameRect Initializes a new NSControl object in frameRect, and
attempts to create a corresponding NSCell.

Setting the Control’s Cell

+ (Class)cellClass Returns nil; overridden by subclasses.

+ (void)setCellClass: (Class)factoryld Implemented by subclasses to set the NSCell class used.
—(id)cell Returns the control’s NSCell.

— (void)setCell: (NSCell *)aCell Sets the control’s NSCell to aCell.

Enabling and Disabling the Control
—(BOOL)isEnabled Returns whether the control reacts to mouse events.

— (void)setEnabled: (BOOL)flag Sets whether the control reacts to mouse events.

OpenStep Specification—10/19/94 Classes: NSControl 1-69

Identifying the Selected Cell
— (id)selectedCell Returns the control’s selected NSCell.
—(int)selectedTag Returns the tag of the control’s selected cell.

Setting the Control’s Value

— (double)doubleValue Returns the value of the control's selected cell asadouble.

— (float)floatVValue Returns the value of the control's selected cell asafloat.

—(int)intValue Returns the value of the control's selected cell asaint.

— (void)setDoubleValue: (double)aDouble Sets the value of the control's selected cell to aDouble.

— (void)setFloatValue: (float)aFl oat Sets the value of the control's selected cell to aFloat.

— (void)setl ntValue: (int)anint Sets the value of the control's selected cell to anint.

— (void)setNeedsDisplay Set the NeedsDisplay flag.

— (void)setStringValue: (NSString *)aString Sets the value of the control's selected cell to aString.

— (NSString *)stringValue Returns the value of the control's selected cell as an
NSString.

Interacting with Other Controls

— (void)takeDoubleValueFrom: (id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a doubleValue message to sender.

— (void)takeFloatValueFrom: (id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a floatValue message to sender.

— (void)takel ntValueFrom: (id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending aintValue message to sender.

— (void)takeStringValueFrom: (id)sender Sets the receiving NSControl's selected cell to the value
obtained by sending a stringValue message to sender.

Formatting Text

— (NSTextAlignment)alignment Returns the alignment of text in the control’s cell.

— (NSFont *)font Returns the Font used to draw text in the control’s cell.

— (void)setAlignment: (NSTextAlignment)mode Sets the alignment mode of the text in the control's cell to
mode.

1-70 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setFont: (NSFont *)fontObject

— (void)setFloatingPointFor mat: (BOOL)autoRange
left: (unsigned)leftDigits
right: (unsigned)rightDigits

Managing the Field Editor
—(BOOL)abortEditing
— (NSText *)currentEditor
— (void)validateEditing

Resizing the Control
— (void)calcSize

— (void)sizeToFit

Displaying the Control and Cell
— (void)drawCell: (NSCell *)aCell
— (void)drawCelll nside: (NSCell *)aCell
— (void)selectCell: (NSCell *)aCell
— (void)updateCell: (NSCell *)aCell
— (void)updateCelll nside: (NSCell *)aCell

Target and Action
— (SEL)action
—(BOOL)isContinuous

— (BOOL)sendAction: (SEL)theAction
to:(id)theTarget

— (int)sendActionOn: (int)mask
— (void)setAction: (SEL)aSelector
— (void)setContinuous: (BOOL)flag

OpenStep Specification—10/19/94

Sets the Font used to draw text in the control’s cell to
fontObject.

Sets the display format for floating point valuesin the
control’s cell

Aborts editing of text displayed by the NSControl.
Returns the object used to edit text in the control.
Validates the user’s changes to editabl e text.

Recalculates internal size information.

Resizes the control to fit its cell.

Redraws aCell if it's the control’s cell.

Redraws aCell’sinsideiif it's the control’s cell.

Selects aCell if it’sthe control’s cell.

Redisplays aCell or marksit for redisplay.

Redisplays the inside of aCell or marksit for redisplay.

Returns the NSControl’s action method.

Returns whether the control’s NSCell continuously sends
itsaction.

Has the NSA pplication object send theAction to theTarget.

Determines when the action is sent while tracking.
Sets the NSControl’s action method to aSelector.

Sets whether the control’s NSCell continuously sendsits
action.

Classes: NSControl 1-71

— (void)setTar get: (id)anObject Sets the NSControl’s target object to anObject.

—(id)tar get Returns the NSControl’s target object.

Assignhing a Tag

— (void)setTag: (int)anint Sets the tag of the control’s NSCell to anint.

— (int)tag Returns the tag of the control’s NSCell.

Tracking the Mouse

— (void)mouseDown: (NSEvent *)theEvent Invoked when the mouse button goes down while the
cursor is within the bounds of the NSControl. This
method highlightsthe NSControl’s NSCell and sendsit
atrackMouse:inRect:of View:untilM ouseUp:
message. Whenever the NSCell finishes tracking the
mouse (for example, because the cursor has left the
cell’s bounds), the cell is unhighlighted. If the mouse
button is still down and the cursor reenters the bounds,
the cell is again highlighted and a new
trackM ouse:inRect: of View: untilM ouseUp:
message is sent. This behavior repeats until the mouse
button goes up.

— (BOOL)ignoresM ultiClick Indicates whether multiple clicks are ignored.
— (void)setl gnoresM ultiClick:(BOOL)flag Sets whether multiple clicks are ignored, according to flag.

Methods Implemented by the Delegate

NSControl itself doesn't have adelegate. These del egate methods are declared in NSControl.h but areintended for
subclasses, such as NSTextField and NSMatrix, that do have delegates and that allow text editing.

—(BOOL)control:(NSControl *)control Sent directly by control to the delegate; returns YES if the
textShouldBeginEditing: (NSText *)fieldEditor NSControl should be allowed to start editing the text.

— (BOOL)controal: (NSControl *)control Sent directly by control to the delegate; returns YES if the
textShouldEndEditing: (NSText *)fieldEditor NSControl should be allowed to end its edit session.

— (void)control TextDidBeginEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSControl TextDidBeginEditingNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

1-72 Chapter 1. Application Kit OpenStep Specification—10/19/94

— (void)control TextDidEndEditing: (NSNotification * JaNotification
Sent by the default notification center to the delegate;
aNotification is aways
NSControl TextDidEndEditingNotification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

— (void)control TextDidChange: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSControl TextDidChangeNoatification. If the delegate
implementsthismethod, it’'sautomatically registered to
receive this notification.

OpenStep Specification—10/19/94 Classes: NSControl 1-73

NSCStringText

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSIgnoreMisspelledWords (NSText)
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSCStringText.h

Class Description

The NSCStringText class declares the programmeatic interface to objects that manage text using eight-bit character
encodings. The encoding isthe same as the default C string encoding provided by defaultCStringEncoding in the
NSString class. NSCStringText can be used in situations where backwards compatibility with the detailed

interfaces of the NEXTSTEP Text object isimportant. Applicationsthat can use theinterface of NSText should do

0.

The NSCStringText classisunlike most other classesin the Application Kit inits complexity and range of features.
Oneof itsdesign goalsisto provide acomprehensive set of text-handling features so that you'll rarely need to create
asubclass. An NSCStringText object can (among other things):

Control the color of itstext and background.

Control the font and layout characteristics of its text.

Control whether text is editable.

Wrap text on aword or character basis.

Write text to, or read it from, afile, as either RTF or plain ASCI| data.
Display graphic images within its text.

Communicate with other applications through the Services menu.

Let another object, the delegate, dynamically control its properties.

L et the user copy and paste text within and between applications.

L et the user copy and paste font and format information between NSCStringText objects.
Let the user check the spelling of words in its text.

Let the user control the format of paragraphs by manipulating aruler.

NSCStringText can deal only with eight-bit characters. Therefore, it isnot able to deal with Unicode character sets,
and NSCStringText can't be fully internationalized.

1-74

Chapter 1: Application Kit OpenStep Specification—10/19/94

Plain and Rich NSCStringText Objects

When you create an NSCStringText object directly, by default it allows only one font, line height, text color, and
paragraph format for the entire text. You can set the default font used by new NSCStringText instances by sending
the NSCStringText classobject asetDefaultFont: message. Once an NSCStringText object is created, you can alter
its global settings using methods such as setFont:, setLineHeight:, setTextGray:, and setAlignment:. For
convenience, such an NSCStringText object will be called a plain NSCStringText object.

To allow multiple values for these attributes, you must send the NSCStringText object asetRichText:YES
message. An NSCStringText object that allows multiple fonts al so allows multiple paragraph formats, line heights,
and so on. For convenience, such an NSCStringText object will be called arich NSCStringText object.

A rich NSCStringText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words
are supported: On input, an NSCStringText object ignores any control word it doesn't recognize; some of those it
canread and interpret it doesn't write out. Refer to the class description of NSText for alist of the RTF control words
that an NSCStringText object recognizes.

Note: An NSCStringText object writeseight-bit charactersin the default C string encoding, which differs somewhat
from the ANSI character set.

In an NSCStringText object, each sequence of characters having the same attributesis called arun. A plain
NSCStringText object has only one run for the entire text. A rich NSCStringText object can have multiple runs.
Methods such as setSelFont: and setSelColor: let you programmatically modify the attributes of the selected
sequence of charactersin arich NSCStringText object. As discussed below, the user can set these attributes using
the Font panel and the ruler.

NSCStringText objects are designed to work closely with various objects and services. Some of these—such asthe
delegate or an embedded graphic object—require adegree of programming on your part. Others—such asthe Font
panel, spelling checker, ruler, and Services menu—take no effort other than deciding whether the service should be
enabled or disabled. The following sections discuss these interrel ationships.

Notifying the NSCStringT ext Object's Delegate

Many of an NSCStringText object's actions can be controlled through an associated object, the NSCStringText
object's delegate. If it implements any of the following methods, the delegate receives the corresponding message
at the appropriate time;

textWillResize:
textDidResize:oldBounds:
textWillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillStartReadingRichText:
textWillFinishReadingRichText:
textWillWrite:
textDidRead: paper Size:

So, for example, if the delegate implements the textWillConvert:fromFont:toFont: method, it will receive
notification upon the user'sfirst attempt to change the font of the text. Moreover, depending on the method's return
value, the delegate can either allow or prohibit changes to the text. See “Methods Implemented by the Delegate”.
The delegate can be any object you choose, and one delegate can control multiple NSCStringText objects.

OpenStep Specification—10/19/94 Classes: NSCStringText 1-75

Adding Graphics to the Text

A rich NSCStringText object allows graphics to be embedded in the text. Each graphic istreated asasingle
(possibly large) “character”: The text's line height and character placement are adjusted to accommodate the
graphic “character.” Graphics are embedded in thetext in either of two ways: programmatically or directly through
user actions. The programmatic approach is discussed first.

In the programmatic approach, you add an object—generally a subclass of NSCell—to the text. This object
manages the graphic image by drawing it when appropriate. Although NSCell subclasses are commonly used, the
only requirement is that the embedded object responds to these messages—see “ Methods Implemented by an
Embedded Graphic Object” for more information:

highlight:withFrame:inView:
drawWithFrameinView:

trackM ouse:inRect: of View: untilM ouseUp:
cellSize:

readRichText:forView:

richTextforView:

You place the graphic object in the text by sending the NSCStringText object areplaceSelWithCell: message.

An NSCStringText object displays a graphic in itstext by sending the managing object a
drawWithFrame:inView: message. To record the graphic to afile or to the pasteboard, the NSCStringText object
sends the managing object arichTextfor View: message. The object must then write an RTF control word along
with any data (such as the path of a TIFF file containing its image data) it might need to recreate itsimage. To
reestablish the text containing the graphic image from RTF data, an NSCStringText object must know which class
to associate with particular RTF control words. You associate a control word with a class object by sending the
NSCStringText class object aregister Directive:for Class. message. Thereafter, whenever an NSCStringText
object findstheregistered control word inthe RTF databeing read from afile or the pasteboard, it will create anew
instance of the class and send the object areadRichText:for View: message.

An aternate means of adding an image to the text is for the user to drag an EPS or TIFF fileicon directly into an

NSCStringText object. The NSCStringText object automatically creates a graphic object to manage the display of
theimage. Thisfeature requires arich NSCStringText object that has been configured to receive dragged images—
see the set mportsGraphics. method of the NSText class.

Images that have been imported in thisway can be written as RTFD documents. Programmatic creation of RTFD
documentsis not supported in this version of OpenStep. RTFD documents use afile package, or directory, to store
the components of the document (the “D” stands for “directory”). The file package has the name of the document
plusa“.rtfd” extension. Thefile package always contains afile called TXT.rtf for the text of the document, and one
or more TIFF or EPSfilesfor theimages. An NSCStringText object can transfer information in an RTFD document
to afileand read it from afile—see thewriteRTFDToFile:atomically: and readRT FDFromFile: methodsin the
NSText methods.

1-76 Chapter 1. Application Kit OpenStep Specification—10/19/94

Cooperating with Other Objects and Services

NSCStringText objects are designed to work with the Application Kit's font conversion system. By default, an
NSCStringText object keeps the Font panel updated with the font of the current selection. It also changes the font
of the selection (for arich NSCStringText object) or of theentiretext (for adefault NSCStringText object) to reflect
the user's choices in the Font panel or menu. To disconnect an NSCStringText object from this service, send it a
setUsesFontPanel:NO message (this method is actually implemented by NSText—the superclass).

If an NSCStringText object is a subview of an NSScrollView, it can cooperate with the NSScrollView to display
and update aruler that displays formatting information. The NSScrollView retiles its subviews to make room for
the ruler, and the NSCStringText object updates the ruler with the format information of the paragraph containing
the selection. The toggleRuler: method controls the display of this ruler. Users can modify paragraph formats by
mani pulating the components of the ruler.

By means of the Services menu, an NSCStringText object can make use of facilities outside the scope of its own
application. By default, an NSCStringText object registerswith the services system that it can send and receive RTF
and plain ASCII data. If the application containing the NSCStringText object has a Services menu, amenuitemis
added for each service provider that can accept or return these formats. To prevent NSCStringText objects from
registering for services, send the NSCStringText class object an excludeFromServicesM enu: Y ES message before
any NSCStringText objects are created.

Coordinates and sizes mentioned in the method descriptions below are in PostScript units—1/72 of an inch.

Initializing a New NSCStringT ext Object

— (id)initWithFrame: (NSRect)frameRect Returns a new NSCStringText object at frameRect
text: (NSString *)theText initialized with the contents of theText and with mode
alignment: (NSTextAlignment)mode aignment.

Modifying the Frame Rectangle

— (void)resizeTextWithOldBounds: (NSRect)oldBounds
maxRect: (NSRect)maxRect Used by the NSCStringText object to resize and redisplay
itself.

Laying Out the Text

—(int)calcLine Calculates line breaks.
— (BOOL)changeTabStopAt: (float)oldX Resets the position of the specified tab stop.
to: (float)newX
—(BOOL)charWrap Returns whether extralong words are wrapped.
— (void *)defaultPar agraphStyle Returns the default paragraph style.
— (float)descentLine Returns distance from base line to bottom of line.

OpenStep Specification—10/19/94 Classes: NSCStringText 1-77

— (void)getM ar ginL eft: (float *)leftMargin
right:(float *)rightMargin
top: (float *)topMargin
bottom: (float *)bottomMargin

— (void)getM inWidth: (float *)width
minHeight: (float *)height
maxWidth: (float)widthMax
maxH eight: (float)heightMax

— (float)lineHeight

— (void *)par agr aphStyleFor Font: (NSFont *)fontld
alignment: (int)alignment

— (void)setChar Wrap:(BOOL)flag
— (void)setDescentL ine: (float)value

— (void)setLineHeight: (float)value

— (void)setM ar ginL eft: (float) eftMargin
right: (float)rightMargin
top: (float)topMargin
bottom: (float)bottomMargin

— (void)setNoW'r ap

— (void)setPar agraphStyle: (void *)paratyle

— (BOOL)set Sel Prop: (NSParagraphProperty)property

to: (float)value

Reporting Line and Position
— (int)lineFromPosition: (int)position

— (int)positionFromLine:(int)line

Reading and Writing Text
— (void)finishReadingRichText
— (NSTextBlock *)fir stTextBlock

1-78 Chapter 1: Application Kit

Gets by reference the dimensions of margins around the
text.

Given the widthMax and heightMax, cal culates the
minimum area needed to display the text and returns
width and height by reference.

Returns height of aline of text.

Recal culates the paragraph style based on new font fontld
and alignment.

Sets whether extralong words are wrapped.

Sets the distance from the base line to the bottom of lineto
value.

Sets the height of aline of text to value.

Adjusts the margins around the text.

Disables word wrap.
Sets the default paragraph style for the entire text.

Sets a paragraph property for one or more selected

paragraphs to value.

Converts character position to line number.

Converts line number to character position.

Sent after the NSCStringText object reads RTF data.

Returns a pointer to thefirst text block in the
NSCStringText object.

OpenStep Specification—10/19/94

— (NSRect)par agraphRect: (int) paraNumber
start:(int *)startPos
end: (int *)endPos

— (void)startReadingRichText

Editing Text
— (void)clear: (id)sender
— (void)hideCar et
— (void)showCaret

Managing the Selection

— (void)getSelectionStart: (NSSel Pt *)start
end: (NSSelPt *)end

— (void)replaceSel: (NSString *)astring

— (void)replaceSel: (NSString *)aString
length: (int)length

— (void)replaceSel: (NSString *)aString
length: (int)length
runs:(NSRunArray *)insertRuns

— (void)scrollSel ToVisible
— (void)selectError
— (void)selectNull

— (void)setSelectionStart: (int)start
end: (int)end
— (void)select Text: (id)sender

Setting the Font
+ (NSFont *)defaultFont

+ (void)setDefaultFont: (NSFont *)anObject

— (void)setFont: (NSFont *)fontObj

paragraphStyle: (void *)paragraphSyle

OpenStep Specification—10/19/94

Returns the location and size of a paragraph identified by
paraNumber; also returns the starting and ending
character positions by reference.

Sent before the NSCStringText object begins reading RTF
data.

Deletes the selected text.
Removes the caret from the text display.

Displays the previously hidden caret in the text display.

Getsinformation (by reference) relating to the starting and
ending character positions of the selection.

Replaces the selection with aString.
Replaces the selection with length bytes of aString.

Replaces the selection with length bytes of aString.
insertRuns is a pointer to the current run in the run

array.
Brings the selection within the frame rectangle.
Selects all the text.

Deselects the current selection.

Selects text from characters start through end.

Makes the receiver the first responder and selects all text.

Returns the default NSFont object for NSCStringText
objects.

Makes anObject the default NSFont object for
NSCStringText objects.

Sets the NSFont object and paragraph style for all text.

Classes: NSCStringText 1-79

— (void)setSel Font: (NSFont *)fontObj

— (void)setSelFont: (NSFont *)fontObj
paragraphStyle: (void *)paragraphSyle

— (void)setSel FontFamily: (NSString *)fontName
— (void)setSelFont Size: (float)size
— (void)setSelFontStyle: (NSFontTraitM ask)traits

Finding Text

— (BOOL)findText: (NSString *)textPattern
ignoreCase: (BOOL)ignoreCase
backwar ds.(BOOL)backwards
wrap: (BOOL)wrap

Modifying Graphic Attributes
— (NSColor *)runColor:(NSRun *)run
— (NSColor *)selColor
— (void)setSelColor: (NSColor *)color

Reusing an NSCStringText Object

— (void)renewFont: (NSFont *)newFontObj
text: (NSString *)newText
frame: (NSRect)newFrame
tag: (int)newTag

— (void)renewFont: (NSString *)newFontName
size: (float)newFontSze
style: (int)newFontStyle
text:(NSString *)newText
frame: (NSRect)newFrame
tag: (int)newTag

— (void)renewRuns: (NSRunArray *)newRuns
text: (NSString *)newText
frame: (NSRect)newFrame
tag: (int)newTag

1-80 Chapter 1: Application Kit

Sets the NSFont object for the selection.

Sets the NSFont object and paragraph style for the
selection.

Sets the font family for the selection.
Sets the font size for the selection.

Setsthe font style for the selection.

Searches for textPattern in the text, starting at the insertion
point. ignoreCase instructs the search to disregard case;
backwards means search backwards; wrap means that
when the search reachesthe beginning or end of thetext
(depending on the direction), it should continue by
wrapping to the end or beginning of the text.

Returns the color of the specified text run.
Returns the color of the selected text.

Sets the color of the selected text.

Resets the NSCStringText object to draw different text
newText in font newFontld within frame newFrame.

Resets the NSCStringText object to draw different text
newText in the font identified by newFontName,
newFontS ze, and newFontStyle. Drawing occurswithin
frame newFrame.

Resets the NSCStringText object to draw different text
newText in newFrame.

OpenStep Specification—10/19/94

Setting Window Attributes
— (BOOL)isRetainedWhileDrawing

— (void)setRetainedW hileDrawing: (BOOL)flag

Assigning a Tag
— (void)set Tag: (int)anint

—(int)tag

Handling Event Messages
— (void)becomeK eyWindow
— (void)moveCar et: (unsigned short)theKey
— (void)resignKeyWindow

Displaying Graphics within the Text

+ register Directive: (NSString *)directive
forClass:class

— (NSPoint)locationOfCell: (NSCell *)cell
— (void)replaceSelWithCell: (NSCell *)cell

— (void)setL ocation: (NSPoint)origin
of Cell: (NSCell *)cell

Using the Services Menu and the Pasteboard

+ excludeFromServicesM enu: (BOOL)flag

Returns whether a retained window is used for drawing.

Allows use of aretained window when drawing.

Makes anInt the NSCStringText object’s tag.
Returns the NSCStringText object’s tag.

Activates the caret if selection has width of O.
Moves the caret in response to arrow keys.

Deactivates the caret.

Associates an RTF control word (directive) with class
(usually NSCell and subclasses); objects of this class
are encoded through RTF control wordsin
NSCStringText objects.

Returns the location of cell.
Replaces the selection with cell object cell.

Setsthe origin point of cell.

Controls whether NSCStringText objects can register for
services.

— (BOOL)readSelectionFromPasteboar d: (NSPasteboard *)pboard

Replaces the sel ection with data from pasteboard pboard.

— (id)validRequestor For SendType: (NSString *)sendType

returnType: (NSString *)returnType

Determines which Service menu items are enabled.

— (BOOL)writeSelectionToPasteboar d: (N SPasteboard *)pboard

types: (NSArray *)types

OpenStep Specification—10/19/94

Copies the selection to pasteboard pboard.

Classes: NSCStringText 1-81

Setting Tables and Functions
— (const NSFSM *)break Table
— (const unsigned char *)char CategoryTable
— (NSCharFilterFunc)char Filter
— (const NSFSM *)clickTable
— (NSTextFunc)drawFunc
— (const unsigned char *)postSelSmartTable
— (const unsigned char *)preSelSmartTable
— (NSTextFunc)scanFunc

— (void)setBreak Table: (const NSFSM *)aTable

Returns the table defining word boundaries.
Returns the table defining character categories.
Returns the current character filter function.
Returns the table defining double-click selection.
Returns the current draw function.

Returns cut and paste table for right word boundary.
Returns cut and paste table for left word boundary.
Returns the current scan function.

Sets the table defining word boundaries.

— (void)setChar CategoryTable: (const unsigned char *)aTable

— (void)setChar Filter : (NSCharFilterFunc)aFunction

— (void)setClick Table: (const NSFSM *)aTable

— (void)setDrawFunc: (NSTextFunc)aFunction

Setsthetabledefining character categoriesusedin theword
wrap or click tables.

Makes aFunction the character filter function.
Sets the table defining double-click selection.

Makes aFunction the function that draws the text.

— (void)setPost Sel SmartTable: (const unsigned char *)aTable

Sets the cut and paste table for right word boundary.

— (void)setPreSel SmartTable: (const unsigned char *)aTable

— (void)set ScanFunc: (NSTextFunc)aFunction
— (void)setTextFilter: (NSTextFilterFunc)aFunction
— (NSTextFilterFunc)textFilter

Printing

— (void)adj ustPageH eightNew: (float *)newBottom
top: (float)oldTop
bottom: (float)ol dBottom
[imit: (float)bottomLimit

1-82 Chapter 1: Application Kit

Sets the cut and paste table for |eft word boundary.
Makes aFunction the scan function.
Makes aFunction the text filter function.

Returns the current text filter function.

Assists with automatic pagination of text.

OpenStep Specification—10/19/94

Implemented by an Embedded Graphic Object

— (NSSize)cellSize Embedded cell returnsits size.

— (void)drawWithFrame: (NSRect)cellFrame Embedded object drawsiitself, including frame, within
inView: (NSView *)control View cellFrame in control View.

— (void)highlight: (BOOL)flag Embedded object highlights or unhighlights itself with
withFrame: (NSRect)cellFrame cellFrame of controlView, depending on the value of
inView: (NSView *)control View flag.

— (void)readRichText: (NSString *)stringObject Embedded object reads its RTF representation from
forView: (NSView *)view stringObject and initializes itself.

— (NSString *)richTextFor View: (NSView *)view Embedded object storesits RTF representation within view
as astring object and returnsiit.

— (BOOL)trackM ouse: (NSEvent *)theEvent Embedded object implements this method to track mouse
inRect: (NSRect)cellFrame movement within tracking rectangle (cellFrame) and to
of View: (NSView *)control View detect mouse-up event (untilMouseUp).

untilM ouseUp: (BOOL)untilMouseUp

Implemented by the Delegate

— (void)textDidRead: (NSCStringText *)textObject L ets the delegate review paper size.
paper Size: (NSSize)paperSze

— (NSRect)textDidResize: (NSCStringText *)textObject
oldBounds: (NSRect)oldBounds Reports size change to delegate.

— (NSFont *)textWillConvert: (NSCStringText *)textObject
fromFont: (NSFont *)font Lets delegate intercede in selection’s font change.
toFont: (NSFont *)font
— (void)textWillFinishReadingRichText: (NSCStringText *)textObject
Informs del egate that the NSCStringText object finished
reading RTF data.
— (void)textWillResize: (NSCStringText *)textObject
Informs del egate of impending size change.
— (void)textWill SetSel: (NSCStringText *)textObject
toFont: (NSFont *)font L ets delegate intercede in the updating of the Font panel.

— (void)textWillStartReadingRichText: (NSCStringText *)textObject

Informs del egate that NSCStringText object will read RTF
data

— (NSSize)textWillWrite: (NSCStringText *)textObject
L ets the delegate specify paper size.

OpenStep Specification—10/19/94 Classes: NSCStringText 1-83

Compatibility Methods

- (NSCStringTextInternal State *)cStringTextl nter nal State

Returns a structure that represents the instance variabl es of
the NSCStringText object. The structure is defined in
appkit/NSCStringText.h, and in the “ Types and
Constants” section of the Application Kit
documentation. Note that this method is provided for
applications that really must depend on changing the
values of an NSCStringText object’sinstance variables.

1-84 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSCursor

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Inherits From: AppKit/NSCursor.h

Class Description

An NSCursor holds an image that the window system can display for the cursor. An NSCursor isinitialized with
an N SImage object (which can subsequently be replaced by sending the NSCursor asetl mage: message). To make
the window system display a particular image as the current cursor, simply send a set message to the NSCursor
instance associated with that image.

For automatic cursor management, an NSCursor can be assigned to a cursor rectangle within awindow. When the
window is key and the user moves the cursor into the rectangle, the NSCursor becomesthe current cursor. It ceases
to be the current cursor when the cursor leaves the rectangle. The assignment is made using NSView's

addCur sor Rect:cur sor: method, usually inside aresetCur sor Rects method:

- (void)resetCursorRects

{

[self addCursorRect:someRect cursor:theNSCursorObject];

}

Thisisthe recommended way of associating a cursor with a particular region inside awindow. However, the
NSCursor class provides two other ways of setting the cursor:

» The class maintainsits own stack of cursors. Pushing an NSCursor instance on the stack setsit to be the
current cursor. Popping an NSCursor from the stack sets the next NSCursor in line, the one that’s then at the
top of the stack, to be the current cursor.

* An NSCursor can be made the owner of atracking rectangle and told to set itself when it receives a
mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NSCursor instances: the standard arrow cursor, and the I-beam
cursor that’s displayed over editable or selectable text. These can be retrieved with the class methods ar r owCur sor
and | BeamCur sor, respectively. There's no NSCursor instance for the wait cursor. The wait cursor is displayed
automatically by the system, without any required program intervention.

Initializing a New NSCursor Object

— (id)initWithlmage: (NSImage *)newl mage Initializes a new NSCursor object with newlmage.

OpenStep Specification—10/19/94 Classes: NSCursor 1-85

Defining the Cursor

— (NSPoint)hot Spot

— (NSImage *)image

— (void)setHot Spot: (NSPoint)spot
— (void)setl mage: (NSImage *)newl mage

Setting the Cursor

+ (void)hide

+ (void)pop

+ (void)setHiddenUntilM ouseM oves:(BOOL)flag;

+ (void)unhide

— (BOOL)isSetOnM ouseEntered
— (BOOL)isSetOnM ouseExited
— (void)mouseEnter ed: (NSEvent *)theEvent

— (void)mouseExited: (NSEvent *)theEvent

— (void)pop

—(void)push

— (void)set

— (void)setOnM ouseEntered: (BOOL)flag
— (void)setOnM ouseExited: (BOOL)flag

Getting the Cursor

+ (NSCursor *)arrowCur sor
+ (NSCursor *)currentCur sor

+ (NSCursor *)IBeamCur sor

1-86

Chapter 1: Application Kit

Returns the point on the cursor that’s aligned with the
mouse.

Returns the NSImage object that has the cursor image.
Sets the point on the cursor that’s aligned with the mouse.

M akes newl mage the NSImage object that supplies the
Cursor image.

Hidesthe cursor.

Restores the previous cursor.

Hides cursor when flag is YES; reveals it otherwise.
Shows the cursor.

Returns YES if mouseEntered: sets cursor.
Returns YES if mouseExited: sets cursor.

Responds to amouse-entered event by setting the cursor if
setOnM ouseEntered was sent.

Responds to a mouse-exited event by setting the cursor if
setOnM ouseExited was sent.

Removes the topmost NSCursor object from the cursor
stack, and makes the next NSCursor down the current
cursor.

Puts the receiving NSCursor on the cursor stack and setsit
to be the current cursor.

Sets the NSCursor to be the current cursor.
Determines whether mouseEntered: sets cursor.

Determines whether mouseExited: sets cursor.

Returns an arrow cursor.
Returns the current cursor.

Returns an |-beam cursor.

OpenStep Specification—10/19/94

NSCustomIimageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCustomlmageRep.h

An NSCustoml mageRep isan obj ect that uses adel egated method to render animage. When called uponto produce
the image, it sends a message to its delegate to have the method performed.

Like most other kinds of NSImageReps, an NSCustomlmageRep isgenerally used indirectly, through an NSImage
object. An NSImage must be able to choose between various representations of a given image. It also needsto
provide an off-screen cache of the appropriate depth for any image it uses. It determines this information by
guerying its NSImageReps.

Thusto work with an NSImage, an NSCustoml mageRep must be able to provide someinformation about itsimage.
Use the following methods, inherited from the NSImageRep class, to set these attributes of the
NSCustoml mageRep:

setSize

setCol orSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Initializing a New NSCustomIimageRep

— (id)initWithDrawSelector : (SEL)aSel ector Initializes a new instance so that it delegates the
delegate: (id)anObject responsibility for drawing to anObject. When the
NSCustomlmageRep receivesadr aw message, it sends
an aSelector message to anObject.

Identifying the Object
—(id)delegate Returns the delegate.

— (SEL)drawsSelector Returns the associated draw method selector.

OpenStep Specification—10/19/94 Classes: NSCustomimageRep 1-87

NSDatalLink

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSDataLink.h

Class Description

An NSDatalink object (or data link) defines asingle link between a selection in a source document and a
dependent, dynamically updated selection in a destination document.

A datalink istypically created when linkable datais copied to the pasteboard. First, an NSSelection object
describing the data is created. Then alink to that selection is created using

initLinkedToSour ceSelection: managedBY: supportingTypes.. The link can then be written to the pasteboard
using writeToPasteboard:. Usually, after the link has been written to the pasteboard (or saved to afile using
writeToFile:) the link isfreed because it's generally of no further use to the source application.

Once the data and link have been written to the pasteboard, they can be added to a destination document by an
object that can respond to a message to Paste and Link. The object responding to this message will paste the data
asusual. The destination application will then read the link from the pasteboard using initWithPasteboar d:, create
an NSSelection describing the linked data within the destination document, and will add the link by sending
addLink:at: to the document’s NSDatal inkManager object (also known as a data link manager or simply link
manager).

When the link is added to the destination document’s link manager, it becomes a destination link. At that time, the
datalink’s object establishes a connection with the source document’slink manager, which automatically createsa
source link in the source application; the source link refers to the source selection.

A link that isn’'t managed by alink manager isabroken link. (Both source and destination links have link managers.)
All links are broken links when they are created. Links can be explicitly broken (ensuring that they cause no
updates) using the break method. Broken links (that aren’t former source links) can be hooked up as destination
linkswith theaddL ink:at: method. The disposition of alink (destination, source, or broken) can be retrieved with
the disposition method. Most of the messages defined by the NSDatal ink class can be sent to alink of any
disposition, but some only make sense when sent to alink with a specific disposition; these are so noted in their
method descriptions.

Links of al dispositions (except linksto files) maintain an NSSelection object referring to the link’s selection in
the source document; this selection is returned by the sour ceSelection method. Links directly to files represent
entirefilesrather than selectionsin adocument; these links are created with initLinked ToFile: and have no source
selection.

Source and destination links also maintain an NSSelection describing the location of the data in the destination
document; this selection is returned by the destinationSelection method.

1-88 Chapter 1: Application Kit OpenStep Specification—10/19/94

See the NSSelection class description for more information on NSSelection objects.

Initializing a Link
—(id)initLinkedToFile: (NSString *)filename Initializes a new instance corresponding to filename.

— (id)initLinkedToSour ceSelection: (NSSelection *)selection

managedBy: (NSDatalLinkManager *)linkManager

supportingTypes: (NSArray *)newTypes Initializes a newly allocated instance corresponding to a
selection in the source document selection.
linkManager is the source document's link manager.
newTypesisaset of typesthat linkManager'sdelegateis
willing to provide when a destination of the link
requests the data described by selection.

— (id)initWithContentsOfFile:(NSString *)filename Initializes a new instance from filename.

— (id)initWithPasteboar d: (NSPasteboard *) pasteboard
Initializes a new instance from pasteboard.

Exporting a Link

— (BOOL)saveL inkln:(NSString *)directoryName Savesthe link in afilename provided by the user; the
NSSavePanel’sinitial directory isin directoryName.

— (BOOL)writeToFile:(NSString *)filename Writes the link into the file filename, returning NO if the
file can’t be written.

— (void)writeToPasteboar d: (NSPasteboard *)pasteboard
Writes the link onto the pasteboard pasteboard.

Information about the Link

— (NSDataL inkDisposition)disposition Identifiesthe link’s type.
— (NSDataLinkNumber)linkNumber Returns the link’s number.
— (NSDataL inkManager *)manager Returns the link’s manager.

Information about the Link’s Source

— (NSDate *)lastUpdateTime Returns the last time the link was updated.

— (BOOL)openSour ce Opens the source document of the link and makes the
source selection visible.

— (NSString *)sour ceApplicationName Returns the name of the application that owns the source
document.

OpenStep Specification—10/19/94 Classes: NSDataLink 1-89

— (NSString *)sour ceFilename Returns the file name of the source document.
— (NSSelection *)sour ceSelection Returns the source selection.

— (NSArray *)types Returns the types that the source document can provide.

Information about the Link’s Destination

— (NSString *)destinationApplicationName Returns the name of the application that owns the
destination document.

— (NSString *)destinationFilename Returns the file name of the destination document.

— (NSSelection *)destinationSelection Returns the destination selection.

Changing the Link

—(BOOL)break Breaks the link
— (void)noteSour ceEdited Informs a source link that the data referred to by its source
selection has changed.

— (void)setUpdateM ode: (NSDatal inkUpdateM ode)mode
Setsthe link’s update mode to mode.

— (BOOL)updateDestination Updates the data referred to by the link’s destination
selection with the contents referred to by the source
selection.

— (NSDataLinkUpdateM ode)updateM ode Returns the link’s update mode.

1-90 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSDataLinkManager

Inherits From: NSObject
Conforms To: NSCoding
NSObject (NSObject)
Declared In: AppKit/NSDataLinkManager.h

Class Description

An NSDatal. inkManager object (also known as adata link manager or simply link manager) manages data linked
from and into adocument through NSDatal ink objects. NSDataL ink objects (or data links) provide alink between
aselection in asource document and a dependent, dynamically updated sel ection in a destination document. When
auser does a Paste and Link command in the destination document, the link manager creates the link in response
to aaddLink:at: message. When thislink is added to the destination document, it makes a connection with the
source document’s link manager, which creates a source link in the source application.

If an application supports data linking, alink manager should be instantiated for every document the application
creates. A link manager must be assigned a delegate that assistsit in keeping the document up to date; this delegate
must implement some or all of the methods listed in the “Methods |mplemented by the Delegate” section of this
class specification. In addition, the delegate must keep the link manager informed of the state of the document,
sending it messages whenever the document is edited, saved, or otherwise altered.

Only applicationsthat support continuously updating links need to be aware of when sourcelinks are created; these
applications can have the delegate of the destination document’s link manager return YES in responseto a

datalL inkM anager TracksL inksl ndividually: message, and then respond to

datal inkM anager :startTrackingL ink: messages to receive notifications that source links are created.

For more information about NSDataL ink objects, see the NSDatalL ink class description. See the NSSelection class
description for more information on NSSel ection objects.

Initializing and Freeing a Link Manager

— (id)initWithDelegate: (id)anObject Initializes and returns a newly allocated instance,
designating anObject as the delegate.
—(id)initWithDelegate: (id)anObject Initializes and returns a newly allocated instance
fromFile:(NSString *)path designating anObject as the delegate. The document's

fileis specified by the full path path.

OpenStep Specification—10/19/94 Classes: NSDataLinkManager 1-91

Adding and Removing Links

—(BOOL)addLink:(NSDataLink *)link
at: (NSSelection *)selection

—(BOOL)addL inkAsMarker:(NSDatalLink *)link
at: (NSSelection *)selection

Addsthelink link to the document, indicating that the data
in the document described by selection is dependent
upon the link.

Incorporates link into the document as a marker in the
location of the destination document described by
selection.

— (NSDataLink *)addL ink PreviouslyAt: (NSSelection *)oldSelection
fromPasteboar d: (NSPasteboard *)pasteboard Creates and adds a new destination link corresponding to

at: (NSSelection *)selection

— (void)breakAllLinks

the same source data as the link described by the
destination selection oldSelection with the new link's
destination selection provided in selection; the
document's links must have been written to the
pasteboard pasteboard.

Breaks all the destination links in the document.

— (void)writelL inksToPasteboar d: (NSPasteboard *)pasteboard

Informing the Link Manager of Document Status
— (void)noteDocumentClosed
— (void)noteDocumentEdited
— (void)noteDocumentReverted
— (void)noteDocumentSaved
— (void)noteDocumentSavedAs: (NSString *)path

— (void)noteDocumentSavedTo: (NSString *)path

Writes all the link manager’s links to pasteboard.

Informs link manager that document has been closed.
Informs link manager that document has been edited.
Informs link manager that changes have been reverted.
Informs link manager that document has been saved.

Informs link manager that document has been saved in the
file specified by the full pathname path.

Informs link manager that document has been saved in the
file specified by the full pathname path.

Getting and Setting Information about the Link Manager

—(id)delegate

— (BOOL)delegateVerifiesLinks
— (NSString *)filename

— (BOOL)interactsWithUser

1-92 Chapter 1: Application Kit

Returns the data link manager’s delegate.
Returns YES if delegate is asked to verify updates.
Returns the filename for the link manager’s document.

Tellswhether thelink manager displayspanelsif link errors
occur.

OpenStep Specification—10/19/94

—(BOOL)isEdited Returns Y ESif the document was edited sincethe last save.

— (void)setDelegateVerifiesL inks: (BOOL)flag Sets whether the delegate is asked to verify updates.
— (void)setlnteractswithUser : (BOOL)flag Setswhether the link manager displays panelsif link errors
occur.

Getting and Setting Information about the Manager’ s Links
— (BOOL)areL inkOutlinesVisible Returns YES if outlines are visible.
— (NSEnumerator *)destinationL ink Enumer ator Returns an enumerator of the destination’'s source links.

— (NSDataLink *)destinationL inkWithSelection: (NSSel ection *)destSel
Returns the destination link for the selection destSel.

— (void)setLinkOutlinesVisible:(BOOL)flag Sets whether outlines are visible.

— (NSEnumerator *)sour ceL inkEnumer ator Returns an enumerator of the receiver’s source links.

Methods Implemented by the Delegate

— (BOOL)copyToPasteboar d: (NSPasteboard *)pasteboard

at: (NSSelection *)selection Implemented by the link manager’s delegate to supply the

cheapCopyAllowed: (BOOL)flag source data described by selection on the pasteboard
pasteboard. If flag is YES, the system guarantees that
no events will be processed by the application before
the delegate is requested to provide the specified data;
in this case, the application doesn’t necessarily have to
write any data representations to the pasteboard. This
method should return Y ES upon success, or NO if the
selection can't be resolved.

— (void)datal inkM anager : (NSDatalL.inkManager *)sender
didBreakLink:(NSDataLink *)link Informs the delegate that the destination link link was
broken and thus data based on the link's destination
selection will no longer be updated.

— (BOOL)dataL inkM anager : (NSDatal.inkManager *)sender
isUpdateNeededFor Link:(NSDataLink *)link Returns YES if the source dataidentified by link's source
selection has been modified since the link's last update
time.

— (void)datal inkM anager : (NSDatalL inkManager *)sender
startTrackingLink:(NSDatal ink *)link Informs the delegate that a destination document has
established a data link link to the link manager's
document and is tracking it.

OpenStep Specification—10/19/94 Classes: NSDataLinkManager 1-93

— (void)dataL inkM anager : (NSDatalinkManager *)sender
stopTrackingLink:(NSDatalink *)link Informsthe delegate that adestination isno longer tracking
the source link link.

— (void)dataL inkM anager CloseDocument: (NSDatal inkManager *)sender
Closes documents opened without the user interface.

— (void)datal inkM anager DidEditL inks: (NSDatal.inkManager *)sender
Informs the delegate that link data has been modified; the
delegate should use this notification to mark the
document as edited.

— (void)dataL inkM anager RedrawL inkOutlines: (NSDatal.inkM anager *)sender
Directs the delegate to redraw objects with link outlines.

—(BOOL)dataL inkM anager TracksL inksl ndividually: (NSDatal_inkM anager *)sender
Returns whether the receiver iswilling to track links

individually.
— (BOOL)importFile:(NSString *)filename Imports the file filename at the destination described by
at: (NSSelection *)selection selection. Returns Y ES upon success, or NO if the

selection can't be resolved.

— (BOOL)pasteFromPasteboar d: (N SPasteboard *)pasteboard
at: (NSSelection *)selection Pastes the updated data that has been made available on
pasteboard. The destination for the datais described by
selection, which was supplied to the link manager asan
argument to the addL ink:at: method. Returns YES
upon success, or NO if the selection can’t be resolved.

— (BOOL)showsSelection: (NSSelection *)selection Shows the source data for the specified selection selection.
Returns Y ES upon success, or NO if the selection can’t
be resolved.

— (NSWindow *)windowFor Selection: (NSSel ection *)selection
Returns the NSWindow object for the given selection, or
nil if the selection can’t be resolved.

1-94 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSDataLinkPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSDatalLinkPanel.h

Class Description

An NSDatalLinkPanel is an NSPanel that allows the user to inspect data links. The NSDatalL inkPanel functions
primarily by sending messages to the current data link manager (representing the current document) and to the
current link (representing the current selection if it’s based on a datalink). Thus, the panel should beinformed, by
asetLink:manager:isMultiple: message, any time the selection changes or adocument is created or activated.
Since the selection may need to be tracked even before the panel is created, this message can be sent to either the
NSDatal inkPanel class or the shared instance.

The NSDatal inkPanel is generally displayed using NSApplication’s or der FrontDatal inkPanel: method. An
application’s sole instance of NSDatal inkPanel can be accessed with the sharedDatal inkPanel method.

Initializing

+ (NSDataLinkPanel *)sharedDataL inkPanel Initializes and returns the shared NSDatalinkPanel object.

Keeping the Panel Up to Date

+ (void)getL ink: (NSDatalL ink **)link Gets information about the NSDatal inkPanel’s currently
manager : (NSDataLinkManager **)linkManager selected link; returnsthe link in link, the link manager
isMultiple:(BOOL *)flag inlinkManager, and the multiple selection statusin flag.

+ (void)setLink:(NSDataLink *)link Informs the receiver of the current document and selection
manager : (NSDatalL inkManager *)linkManager using link as the currently selected link and
isMultiple:(BOOL)flag linkManager asthe current link manager. flagis YESif

the panel will indicate that more than onelink is
selected. Returns self.

— (void)getLink:(NSDatalink **)link Gets information about the NSDatalinkPanel’s currently
manager : (NSDatal inkManager **)linkManager selected link; returns the link in link, the link manager
isMultiple:(BOOL *)flag inlinkManager, and the multiple selection statusin flag.

OpenStep Specification—10/19/94 Classes: NSDataLinkPanel 1-95

— (void)setLink:(NSDataLink *)link
manager : (NSDatal.inkManager *)linkManager
isMultiple:(BOOL)flag

Customizing the Panel
— (NSView *)accessoryView

— (void)setAccessoryView: (NSView *)aView

Responding to User Input

— (void)pickedBreakAllLinks: (id)sender

— (void)pickedBreakL ink: (id)sender

— (void)pickedOpenSour ce: (id)sender

— (void)pickedUpdateDestination: (id)sender

— (void)pickedUpdateM ode: (id)sender

1-96 Chapter 1: Application Kit

Informs the receiver of the current document and selection
using link as the currently selected link and
linkManager asthe current link manager. flag is YESif
the panel will indicate that more than onelink is
selected. Returns self.

Returns the NSDatal.inkPanel’s custom accessory view.

Adds aView to the NSDatalinkPanel’s view hierarchy.

Invoked when the user clicks the Break All Links button;
puts up an attention panel to confirm the user’s action,
and then sendsabreak AlIL inks message to the current
link manager.

Invoked when the user clicks the Break Link button; puts
up an attention panel to confirm the user’s action, and
then sends a break message to the current link.

Invoked when the user clicks the Open Source button;
sends an openSour ce message to the current link.

Invoked when the user clicks Update from Source button;
sends amessage to the current link to verify and update
the data source and then update the destination data.
Returns self.

Invoked when the user selects the update mode; sends a
setUpdateM ode: message to the current link.

OpenStep Specification—10/19/94

NSEPSImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSEPSImageRep.h

Class Description
An NSEPSImageRep is an object that can render an image from encapsulated PostScript code (EPS).

Like most other kinds of NSImageReps, an NSEPSImageRep is generally used indirectly, through an NSImage
object. An NSImage must be able to choose between various representations of a given image. It al'so needsto
provide an off-screen cache of the appropriate depth for any image it uses. It determines this information by
guerying its NSImageReps.

Thus to work with an NSImage, an NSEPSImageRep must be able to provide some information about its image.
The size of the object is set from the bounding box specified in the EPS header comments. Use these methods,
inherited from the NSImageRep class, to set the other attributes of the NSEPSImageRep:

setCol orSpaceName:
setAlpha
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Initializing a New Instance

+ (id)imageRepWithData:(NSData *)epsData InvokesinitWithData: toreturn aninstancewith datafrom
epsData.
—(id)initWithData: (NSData *)epsData Initialize an instance with data from epsData.

Getting Image Data
— (NSRect)boundingBox Returns the rectangle that bounds the image.

— (NSData *)EPSRepresentation Returns the EPS representation of the image.

OpenStep Specification—10/19/94 Classes: NSEPSimageRep 1-97

Drawing the Image

— (void)prepareGState Implemented by subclasses to initialize the graphics state
before the image is drawn.

1-98 Chapter 1. Application Kit OpenStep Specification—10/19/94

NSEvent

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSEvent.h

Class Description

An NSEvent object containsinformation about an event such asamouse-click or akey-down. Thewindow system
associates each such user action with awindow, reporting the event to the application that created the window.
Pertinent information about each event—such as which character was typed and where the mouse was located—is
collected in an NSEvent object and made available to the application. As events are received in the application,
they’'re temporarily placed in storage called the event queue. When the application is ready to process an event, it
takes an NSEvent from the queue.

NSEvents are typically passed to the responder chain—a set of objects within the window that inherit from
NSResponder. For example, NSResponder’s mouseDown: and keyDown: methods take an NSEvent as an
argument. When an NSA pplication retrieves an NSEvent from the event queue, it dispatches it to the appropriate
NSwindow (which isitself an NSResponder) by invoking keyDown: or asimilar message. The NSWindow inturn
passes the event to the first responder, and the event gets passed on down the responder chain until some object
handlesit. In the case of a mouse-down, a mouseDown: message is sent to the NSView in which the user clicked
the mouse, which relays the message to its next responder if it can’t handle the message itself.

Most eventsfollow this same path: from the window system to the application’s event queue, and from there, to the
appropriate objects of the application. However, the Application Kit can create an NSEvent from scratch and insert
it into the event queue for distribution, or send it directly to its destination. (It's rare for an application to create an
event directly, but it's possible, using NSEvent class methods. The newly created events can be added to the event
gueue by invoking NSWindow's (or NSApplication’s) postEvent:atStart: method.

Events are retrieved from the event queue by calling the NSWindow method

nextEventM atchingM ask:untilDate:inM ode: dequeue: or asimilar NSApplication method. These methods
return an instance of NSEvent. The nature of the retrieved event can then be ascertained by invoking NSEvent
instance methods—type, window, and so forth. All types of events are associated with awindow. The
corresponding NSWindow object can be gotten by invoking window. Thelocation of the event within thewindow’s
coordinate system is obtained from locationl nWindow, and the time of the event is gotten from timestamp. The
modifier Flags method returns an indication of which modifier keys (Command, Control, Shift, and so forth) were
held down while the event occurred.

OpenStep Specification—10/19/94 Classes: NSEvent 1-99

Thetype method returns an NSEventType, a constant that identifies the sort of event. The different types of events
fall into five groups:

* Keyboard events

* Mouse events

« Tracking-rectangle events
* Periodic events

» Cursor-update events

Some of these groups comprise several NSEventType constants; others only one. The following sections discuss
the groups, along with the corresponding NSEventType constants.

Keyboard Events

Among the most common events sent to an application are direct reports of the user's keyboard actions, identified
by these three NSEventType constants:

* NSKeyDown: The user generated a character by pressing a key.
* NSKeyUp: The key was released.
» NSFlagsChanged: The user pressed or released a modifier key, or turned Alpha Lock on or off.

Of these, key-down events are the most useful to the application. When the type method returns NSKeyDown, your
next step istypically to determine the character or characters generated by the key-down, by sending the NSEvent
acharacter s message.

Key-up events are less used since they follow almost automatically when there has been a key-down event. And
because NSEvent’s modifier Flags method returns the state of the modifier keys regardless of the type of event,
applications normally don't need to receive flags-changed events; they're useful only for applications that have to
keep track of the state of these keys continuously.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and by changes in the position of the
mouse cursor on the screen. This category consists of:

» NSLeftMouseDown, NSL eftM ouseUp, NSRightM ouseDown, NSRightMouseUp: Two sets of mouse-down
and mouse-up events, one for the left mouse button and one for the right. “Mouse-down” means the user
pressed the button; “mouse-up” means the button was released. |f the mouse has just one button, only left
mouse events are generated. By sending a click Count message to the NSEvent, you can determine whether
the mouse event was a single-click, double-click, and so on.

* NSLeftMouseDragged, NSRightMouseDragged: Two types of mouse-dragged events—one for when the
mouse is moved with its left mouse button down, or with both buttons down, and one for when it's moved
with just the right button down. A mouse with a single button generates only left mouse-dragged events. As
the mouse is moved with a button down, a series of mouse-dragged eventsis produced. The seriesis aways
preceded by a mouse-down event and followed by a mouse-up event.

* NSMouseMoved: The user moved the mouse without holding down either mouse button.

1-100 Chapter 1: Application Kit OpenStep Specification—10/19/94

Mouse-dragged and mouse-moved events are generated repeatedly as long as the user keeps moving the mouse. If
the user holds the mouse stationary, neither event is generated until it moves again.

Note: OpenStep doesn't specify facilities for the third button of a three-button mouse.

Tracking-Rectangle Events

NSMouseEntered and NSMouseExited events are like the “Mouse Events’ listed previoudly, in that they’re
dependent on mouse movements. However, unlike the others, they're generated only if the application has asked
the window system to set a tracking rectangle in awindow. An NSMouseEntered or NSMouseExited event is
created when the cursor has entered the tracking rectangle or left it. A window can have any number of tracking
rectangles; the NSEvent method trackingNumber identifies which rectangle was entered or exited.

Periodic Events

An event of type NSPeriodic simply notifies an application that a certain timeinterval has elapsed. By using the
NSEvent class method startPeriodicEventsAfter Delay: withPeriod:, an application can register that it wants
periodic events and that they should be placed in its event queue at a certain frequency. When the application no
longer needs them, the flow of periodic events can be turned off by invoking stopPeriodicEvents. An application
can’'t have more than one stream of periodic events active at atime. Unlike keyboard and mouse events, periodic
events aren’t dispatched to an NSWindow.

Cursor-Update Events

Events of type NSCursorUpdate are used to implement NSView’s cursor-rectangle methods. An NSCursorUpdate
event is generated when the cursor has crossed the boundary of a predefined rectangular area. The application can
respond by updating the cursor's shape.

Creating NSEvent Objects
+ (NSEvent *)enter ExitEventWithType: (NSEventType)type

location: (NSPoint)location Returns an NSEvent object initialized with general event
modifier Flags: (unsigned int)flags data and information specific to mouse tracking
timestamp: (NSTimel nterval)time (eventNum, trackingNum, userData).

windowNumber : (int)windowNum
context: (NSDPSContext *)context
eventNumber : (int)eventNum
trackingNumber : (int)trackingNum
user Data: (void *)user Data

OpenStep Specification—10/19/94 Classes: NSEvent 1-101

+ (NSEvent *)keyEventWithType: (NSEventType)type

location: (NSPoint)location Returns an NSEvent object initialized with general event
modifier Flags. (unsigned int)flags data and information specific to keyboard events (keys,
timestamp: (NSTimel nterval)time repeatKey, code, ukeys). (ukeys sets the unmodified
windowNumber : (int)windowNum character string.)

context: (NSDPSContext *)context
characters:(NSString *)keys
characterslgnoringM odifiers: (NSString *)ukeys
isSARepeat: (BOOL)repeatKey

keyCode: (unsigned short)code

+ (NSEvent *)mouseEventWithType: (NSEventType)type

location: (NSPoint)location Returns an NSEvent object initialized with general event
modifier Flags: (unsigned int)flags data and information specific to mouse events
timestamp: (NSTimel nterval)time (eventNum, clickNum, pressureValue).

windowNumber : (int)windowNum
context: (NSDPSContext *)context
eventNumber : (int)eventNum
clickCount:(int)clickNum
pressur e: (float) pressureValue

+ (NSEvent *)other EventWithType: (NSEventType)type

location: (NSPoint)location Returns an NSEvent object initialized with general event
modifier Flags: (unsigned int)flags data and information specific to kit-defined events
timestamp: (NSTimelnterval)time (subType, datal, data2).

windowNumber : (int)windowNum
context: (NSDPSContext *)context
subtype: (short)subType
datal:(int)datal

data2: (int)data2

Getting General Event Information

— (NSDPSContext *)context Returns the Display PostScript context of the event.

— (NSPoint)locationl nWindow Returns the event’s location in the base coordinate system
of its window.

— (unsigned intymodifier Flags Returns an integer bitfield containing modifier-key flags.

— (NSTimelnterval)timestamp Returns the time the event occurred in seconds since
system startup.

— (NSEventType)type Returns the type of the event (left-mouse-up,
right-mouse-dragged, key-down, etc.).

— (NSWindow *)window Returns the window object associated with the event.

— (intjwindowNumber Returns the number of the window associated with the
event.

1-102 Chapter 1: Application Kit OpenStep Specification—10/19/94

Getting Key Event Information

— (NSString *)char acters

— (NSString *)character sl gnoringM odifiers

— (BOOL)isARepest

— (unsigned short)keyCode

Getting Mouse Event Information

— (int)clickCount

— (int)eventNumber

— (float)pressure

Getting Tracking Event Information
— (int)trackingNumber

—(void *)user Data

Requesting Periodic Events

Returnsthe character code (astring of characters generated
by the key event).

Returnsthe string of characters generated by the key event
asif no modifier key had been pressed (except for
Shift).

Returns whether the key event is being repeated (user is
holding down the key).

Returns the code that maps to a key on the keyboard.

Returns the number of mouse clicks associated with the
mouse event.

Returns the event number of the latest mouse-down event.
Thisinformation is also useful for handling tracking
events.

Returns avalueindicating the pressure applied to the input
device (used for appropriate devices, not mice).

Returns the number that identifies the tracking rectangle.

Returns data arbitrarily associated with the event.

+ (void)star tPeriodicEventsAfter Delay: (NSTimel nterval)delaySeconds

withPeriod: (NSTimelnterval)periodSeconds

+ (void)stopPeriodicEvents

Start generating periodic events with frequency
periodSeconds after delay delaySeconds for current
thread.

Stop generating periodic events for current thread, and
discard any periodic events remaining in the queue.

Getting Information about Specially Defined Events

— (int)datal
— (int)data2
— (short)subtype

OpenStep Specification—10/19/94

Returns special data associated with the event.
Returns special data associated with the event.
Returns the identifier of the specialy defined event.

Classes: NSEvent 1-103

NSFont

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSFont.h

Class Description

The NSFont class declares the programmatic interface to objects that correspond to fonts. NSFont isin principle
an abstract class that represents fonts in general, not just PostScript fonts. In practice, at thistime, NSFont objects
represent PostScript fonts. Each NSFont object records afont’s name, size, style, and matrix. When an NSFont
object receives a set message, it establishes its font as the current font in the PostScript Server’s current graphics
state.

For a given application, only one NSFont object is created for a particular PostScript font/size or font/matrix
combination. That is—if you ask for 24-point Optima, a new font object is created for 24-point Optimaif such an
object doesn’t exist already. When the NSFont class object receives amessageto create anew object for aparticular
font, it first checkswhether an object has aready been created for that font. If so, the the NSFont class object returns
the existing font object; otherwise, the the NSFont class object creates a new font object and returnsiit.

This sharing of NSFont objects minimizes the number of distinct font objects created. It also implies that no one
object in your application can know whether it has the only reference to a particular NSFont object. Thus, NSFont
objects shouldn’t be deallocated, but should be treated like auto-released Foundation class objects.

Where matrix is used, it refers to a PostScript-style six-element array of numbers that indicate transformations to
be applied to afont. An NSFontldentityMatrix identifies a font matrix used for fonts created by specifying asize.

Thesize of afont in the method definitionsisdefined in “points’, which in currently accepted practice, are actualy
PostScript units—a PostScript unit being defined as 1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a
PostScript unit is 0.3528 millimetres. PostScript “points’ are minimally different from “printer’s points’, so for all
intents and purposes you can think of PostScript units and points as interchangeable.

In general, you instantiate an NSFont object by sending one of the methods listed in “ Creating a Font Object” to
the NSFont class object. The methods with system and user in their names obtain special pre-determined fonts
defined at the system level and the application level, respectively. In general, you would use the
fontWithName:size: and fontWithName:matrix: methods to obtain a named font.

A variety of methods are available for querying afont object. In particular, AFM (Adobe Font Metrics) data can be
obtained by invoking afmDictionary or afmFileContents.

M ethods whose descriptions state “ Returns...and matrix NSFontldentityMatrix” actually return an
NSFontldentityMatrix whose first and fourth elements are multiplied by the current size of the font.

1-104 Chapter 1: Application Kit OpenStep Specification—10/19/94

Exceptions

Methods listed in “ Creating a Font Object” can all raise a NSFontUnavailableException if the requested font can’t

be constructed.

Creating a Font Object

+ (NSFont *)boldSystemFontOf Size: (float)fontSze Returns the font object representing the bold system font

of size fontSze and matrix NSFontl dentityMatrix.

+ (NSFont *)fontWithName: (NSString *)fontName matrix: (const float *)fontMatrix

Returns afont object for font fontName and matrix
fontMatrix.

+ (NSFont *)fontWithName: (NSString *)fontName size: (float)fontS ze

+ (NSFont *)systemFontOf Size: (float)fontSize

Returns afont object for font fontName of size fontSze.

Returnsthe font object representing the system font of size
fontSze and matrix NSFontldentityM atrix.

+ (NSFont *)user FixedPitchFontOf Size: (float)fontSize

+ (NSFont *)user FontOfSize: (float)fontS ze

Setting the Font
+ (void)setUser FixedPitchFont: (NSFont *)aFont

+ (void)setUser Font: (NSFont *)aFont

+ (void)useFont: (NSString *)fontName

— (void)set

Querying the Font

— (NSDictionary *)afmDictionary

OpenStep Specification—10/19/94

Returns the font object representing the application’s
fixed-pitch font of size fontSze and matrix
NSFontldentityMatrix.

Returns the font object representing the application’s
standard font of size fontSze and matrix
NSFontldentityMatrix.

Sets the fixed-pitch font used by default in the application
to aFont.

Sets the standard font used by default in the application to
aFont.

Registers that fontName is used in the document. This
information is used by the printing machinery

Makes this font the graphic state's current font.

Returnsthe font's AFM dictionary if the font has an AFM
file. The return value can possibly be nil, so you must
check to determineif a non-nil value was actually
returned.

Classes: NSFont 1-105

— (NSString *)afmFileContents

— (NSRect)boundingRectFor Font

— (NSString *)displayName

— (NSString *)familyName
— (NSString *)fontName
—(BOOL)isBaseFont

— (const float *)matrix

— (float)pointSize
— (NSFont *)printer Font

— (NSFont *)screenFont

— (float)widthOfString: (NSString *)string

— (float *)widths

Manipulating Glyphs

— (NSSize)advancementFor Glyph: (NSGlyph)aGlyph

1-106 Chapter 1: Application Kit

Returnsthe raw contents of the entire AFM file, in terms of
strings, if the font hasan AFM file. If the font does not
have an AFM file, this method returns nil.

Returns the bounding rectangle for the font. Thisisthe
font’s FontBBox field scaled to the current size of the
font.

Returns the full name of the font as displayed in the font
panel. Thisisthelocalized version of thefont’sname. It
is not necessarily the FullName field of the font.

Returns the name of the font’s family.
Returns the name of the font.

Indicates whether the font is a base font, as opposed to a
composite font.

Returns a pointer to an array of six floats representing the
font’smatrix. You should not alter the datapointed to by
matriX. If you wish to change valuesfor any reason you
must make a copy of the matrix

Returns the size of the font in points.

Returns the printer font for the font, if the receiving font
object is ascreen font. Else, this method returns self.

Returnsthe screen font for the font, if thereisone. Elsethis
method returns self.

Returns the width of string in the font. Use this method
with caution: it assumesthat the charactersin stringcan
all actually be rendered in the font. It uses lossy
encoding methodsin NSString to get the character data.

Returns a pointer to an array representing the widths of the
glyphsin the font.

Returns the horizontal and vertical advancement for
aGlyph. That is, this method returns the amount by
which the current point would be displaced in both x
andy if the specified glyph were rendered in the current
font and size. In general, the y component of the
displacement for “Western” fonts will be zero.

OpenStep Specification—10/19/94

— (NSRect)boundingRectFor Glyph: (NSGlyph)aGlyph
Returns a bounding rectangle for aGlyph, scaled to the
font’s actual size and matrix.

— (BOOL)glyphl sEncoded: (NSGlyph)aGlyph Indicates whether aGlyph is encoded. That is, aGlyph is
present in the encoding for the font.

— (NSPoint)positionOfGlyph: (NSGlyph)curGlyph Returns curGlyph's position when it follows prevGlyph.
precededByGlyph: (NSGlyph)prevGlyph nominal is apointer to aBOOL. If not nil, this method
isNominal: (BOOL *)nominal fillsin nominal with YES, to indicate that the position

has been modified by kerning information, and NO to
indicate that no kerning information was present.

OpenStep Specification—10/19/94 Classes: NSFont 1-107

NSFontManager

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSFontManager.h

Class Description

NSFontManager declares the programmatic interface to objects that manage font conversion in an application.
NSFontManager is the center of activity for font conversion. NSFontManager accepts messages from font
conversion user-interface objects such as the Font menu or the Font panel (see NSFontPanel for more details) and
appropriately converts the current font in the selection by sending a changeFont: message up the responder chain.

When an object receivesachangeFont: message, it should message NSFontManager (by sending it aconvertFont:
message), asking it to convert the font in whatever way the user has specified. Thus, any object containing a font

that can be changed should respond to the changeFont: message by sending a conver tFont: message back to the
NSFontManager for each font in the selection.

To use NSFontManager, you simply insert a Font menu into your application’s menu using the appropriateinterface
construction tools (such as Interface Builder). You can also obtain a Font menu by sending a getFontM enu:

message to NSFontManager and then inserting the menu it returnsinto the application’s main menu. Once the Font
menu isinstalled, your application automatically gains the functionality of both the Font menu and the Font panel.

NSFontManager’s del egate can restrict which font nameswill appear in the Font Panel. See* M ethods |mplemented
by the Delegate” at the end of this class specification for more information.

NSFontManager can be used to convert afont or find out the attributes of afont. It can also be overridden to convert
fontsin some application-specific manner. The default implementation of font conversion isvery conservative: The
font isn't converted unless all traits of the font can be maintained across the conversion.

Generally, you obtain an instance of NSFontManager by sending a sharedFontM anager message to the
NSFontManager class object. NSFontManager will return afont manager object that is shared within your
application. NSFontManager normally returns a pre-defined font manager object, but the actual object whichis
returned can be changed by previously invoking the setFontM anager Factory factory to some other kind of object.

Font Traits

Fonts work mainly in terms of traits, or characteristics, such as bold, italic, condensed, and so on. Traits are
described by a collection of constants such as NSltalicFontM ask, NSBoldFontM ask, and so on. The full
complement of traits are defined in AppKit/NSFontM anager.h. The values of traits are defined in bitwise form
so they can be or’ ed together, although sometraits, such asNSBoldFontM ask and NSUnboldFontM ask naturally
conflict and have the effect of turning each other off. You use one of the convertFont... methods to obtain afont
of the desired characteristics from an existing font.

1-108 Chapter 1: Application Kit OpenStep Specification—10/19/94

The convertFont:toHaveTrait: and the convertFont:toNotHaveTr ait: methods deal with only onetrait at atime.
To convert afont to have (or not have) multiple traits, you must invoke these methods for each separate trait you
wish to add to or remove from the font. Alternatively, use the fontWithFamily:traits.weight:size: method to
specify multiple traitsin one invocation.

The size of afont in the method definitions below is defined in “points”, which, in the current milieu, are actualy
PostScript units—a PostScript unit being defined as 1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a
PostScript unit is 0.3528 millimetres. PostScript “ points’ are minimally different from “printer’s points’, so for al
intents and purposes you can think of PostScript units and points as interchangeable.

Theweight of afont as used in these methodsis simply avalue representing a point in a continuum of font weights
from lightest to heaviest. There's no simple one-to-one mapping of someinteger valueto, say, abold weight. If you
query the font for its weight value, increment the value, and use it as a new weight, you' [l not necessarily obtain a
different face (such as a transition from medium to bold) in a new instance of the font.

Managing the FontManager
+ (void)setFontM anager Factory: (Class)classid Sets the class used to creste the NSFontM anager.
+ (void)setFontPanel Factory: (Class)classld Sets the class used to create the FontPanel.

+ (NSFontManager *)sharedFontM anager Returns a shared FontManager.

Converting Fonts

— (NSFont *)convertFont: (NSFont *)fontObject ConvertsfontObject according to the user’s sel ectionsfrom
the Font panel or the Font menu.
— (NSFont *)conver tFont: (NSFont *)fontObject Returns a Font object whose traits are the same as those of
toFamily: (NSString *)family fontObject except as specified by family.
— (NSFont *)convertFont: (NSFont *)fontObject Returns a Font object whose traits are the same as those of
toFace: (NSString *)typeface fontObject except as specified by typeface.
— (NSFont *)convertFont: (NSFont *)fontObject Returns a Font object whose traits are the same as those of
toHaveTrait: (NSFontTraitMask)trait fontObject except asaltered by the addition of thetraits
specified by trait.
— (NSFont *)conver tFont: (NSFont *)fontObject Returns a Font object whose traits are the same as those of
toNotHaveTrait: (NSFontTraitMask)trait fontObject except as altered by theremoval of thetraits
specified by trait.
— (NSFont *)convertFont: (NSFont *)fontObject Returns a Font object whose traits are the same as those of
toSize: (float)size fontObject except as specified by size.
— (NSFont *)convertWeight: (BOOL)upFlag Attemptsto increase (if upFlag is YES) or decrease (if
of Font: (NSFont *)fontObject upFlag is NO) the weight of the font specified by
fontObject.

OpenStep Specification—10/19/94 Classes: NSFontManager 1-109

— (NSFont *)fontWithFamily: (NSString *)family
traits:(NSFontTraitMask)traits
weight: (int)weight
size: (float)size

Setting and Getting Parameters
—(SEL)action
— (NSArray *)availableFonts
— (NSMenu *)fontM enu: (BOOL)create

— (NSFontPanel *)fontPanel: (BOOL)create

— (BOOL)isEnabled

— (BOOL)isMultiple

— (NSFont *)selectedFont

— (void)setAction: (SEL)aSelector

— (void)setEnabled: (BOOL)flag
— (void)setFontM enu: (NSMenu *)newMenu

— (void)setSelectedFont: (NSFont *)fontObject
isMultiple:(BOOL)flag

Triesto find afont that matches the specified
characteristics.

Gets the action sent by the FontManager.
Provides an array listing all available fonts.

Returns the Font menu, creating oneiif it doesn't exist and
createis YES.

Returns the Font panel, creating oneif it doesn’t exist and
createis YES.

Returns whether the Font panel and menu are enabled.
Returns whether the selection contains multiple fonts.
Returns the first font in the current selection

Sets the action to that specified by aSelector to be sent by
the FontManager when the user selects a new font.

Enables or disables the Font panel and menu depending on
flag.

Sets the font menu to newMenu.

Notifies FontManager of the selection’s current font from
fontObject with flag indicating whether the selection
has multiple fonts.

— (NSFontTraitMask)traitsOf Font: (NSFont *)fontObject

— (int)weightOf Font: (NSFont *)fontObject

Target and Action Methods
— (BOOL)sendAction

Assigning a Delegate
— (id)delegate
— (void)setDelegate: (id)anObject

1-110 Chapter 1: Application Kit

Returns the font traits of fontObject.

Returns the font weight of fontObject.

Dispatches the action message up the responder chain.

Returns the FontManager’s del egate.
Sets the FontManager’s delegate to anObject.

OpenStep Specification—10/19/94

Methods Implemented by the Delegate

— (BOOL)fontM anager : (id)sender willlncludeFont: (NSString *)fontName
Responds to a message informing the FontM anager’s
delegate that the FontPanel is about to include
fontNamein thelist displayed to the user; if thismethod
returns NO, the font isn’t added; otherwise, it is.

OpenStep Specification—10/19/94 Classes: NSFontManager 1-111

NSFontPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSFontPanel.h

Class Description

TheNSFontPanel classdeclaresthe programmatic interface to auser-interface object that displaysalist of available
fonts, enabling usersto preview them and change the typefaces in which text is displayed. Actual changes to text

are effected through conversion messages sent to the NSFontManager. There is only one NSFontPanel object for

each application.

In general, you add the facilities of the NSFontPanel (and of the other components of the font conversion system:
the NSFontManager and the Font menu) to your application through interface construction tools (such as Interface
Builder). You do this by including a Font menu into one of your application’s menus. At runtime, when the user
chooses the Font Panel command for the first time, the NSFontPanel object is created and hooked into the font
conversion system. You can also create (or access) NSFontPanel through the sharedFontPanel method.

An NSFontPanel can be customized by adding an additional NSView object or hierarchy of NSView objects by
using the setAccessoryView: method. If you want the NSFontManager to instantiate a panel object from some
class other than NSFontPanel, use the NSFontM anager’s setFontPanel Factory: method. See NSFontManager for
details on the font manager object that performs font conversion tasks.

Creating an NSFontPanel
+ (NSFontPanel *)sharedFontPanel Returns an NSFontPanel object.
— (NSFont *)panel Conver tFont: (NSFont *)fontObject

Returns a Font object whose traits are the same as those of
fontObject except as specified by the user’s choicesin

the Font Panel.
Setting the Font
— (void)setPanel Font: (NSFont *)fontObject Sets the FontPanel’s current font from fontObject with flag
isMultiple:(BOOL)flag indicating whether it contains multiple fonts.

1-112 Chapter 1: Application Kit OpenStep Specification—10/19/94

Configuring the NSFontPanel
— (NSView *)accessoryView
— (BOOL)isEnabled

— (void)setAccessoryView: (NSView *)aView

— (void)setEnabled: (BOOL)flag

— (BOOL)wor kswhenM odal

Displaying the NSFontPanel

Returns the application-customized view.
Returns whether the FontPanel’s Set button is enabled.

Adds aView above the action buttons at the bottom of the
panel.

Enables or disables the FontPanel’s Set button depending
on flag.

Returns whether FontPanel workswhen another window is
modal.

— (void)or der Window: (NSWindowOQrderingM ode)place

relativeTo: (int)otherWindows

OpenStep Specification—10/19/94

Repositions the FontPanel above or below the other
windows other\Windows as indicated by place and
updates the FontPanel if necessary.

Classes: NSFontPanel 1-113

NSForm

Inherits From: NSMatrix : NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSForm.h

Class Description

An NSForm isan NSMatrix that contains titled entries (text fields) into which a user can type data values. Entries
are indexed from the top down (starting with zero). Each item in the NSForm, including the titles, isan
NSFormCell. A mouse click on an NSFormCell (that is, on thetitle or in the entry ared) startstext editing in that
entry. If the user presses the Return or Enter key while editing an entry, the action of the entry is sent to the target
of the entry, or—if the entry doesn't have an action—the NSForm sends its action to itstarget. If the user presses
the Tab key, the next entry in the NSForm is selected; if the user presses Shift-Tab, the previous entry is selected.

For more information, see the NSFormCell and NSMatrix class specifications.

Laying Out the Form
— (NSFormCell *)addEntry: (NSString *)title

— (NSFormCell *)insertEntry: (NSString *)title
atlndex: (int)index

— (void)removeEntryAtl ndex: (int)index

— (void)setl nter lineSpacing: (float)spacing

Finding Indices
— (int)indexOfCelWithTag: (int)aTag
— (int)indexOfSelectedltem

Modifying Graphic Attributes
— (void)setBezeled: (BOOL)flag
— (void)setBordered: (BOOL)flag
— (void)setTextAlignment: (int)mode

— (void)set TextFont: (NSFont *)fontObject

1-114 Chapter 1: Application Kit

Addsand returnsanew entry with titleasitstitle at theend
of the Form.

Inserts anew entry at index with title asitstitle.

Removes the entry at index.

Sets the spacing between entries to spacing.

Returns the index for the entry with tag aTag.

Returns the index of the currently selected entry.

Sets whether entries have a bezeled border.
Sets whether the entries have a plain border.
Sets how text is aligned within the entries to mode.

Sets the font used to draw entry text to fontObject.

OpenStep Specification—10/19/94

— (void)setTitleAlignment: (NSTextAlignmentymode Sets how titles are aligned to mode.

— (void)set TitleFont: (NSFont *)fontObject Sets the font used to draw entry titles to fontObject.

Setting the Cell Class

+ (Class)cellClass Returnsthe classlast set in asetCellClass. message, or the
NSFormCell classif setCellClass: has never been
caled.

+ (void)setCellClass: (Class)classld Setsthe class of NSCell used in the NSForm.

Getting a Cell
— (id)cell AtI ndex: (int)index Returns the Cell at index.

Displaying a Cell

— (void)drawCellAtI ndex: (int)index Displaysthe Cell at the specified index.
Editing Text
— (void)select TextAtl ndex: (int)index Selects the text in the entry at index.

Resizing the Form

— (void)setEntryWidth: (float)width Sets the width of all the entries (including the title part) to
width.

OpenStep Specification—10/19/94 Classes: NSForm 1-115

NSFormCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSFormCell.h

Class Description

This classis used to implement entries in an NSForm. It displays atitle within itself, on the left-hand side of the
cell. Editing is allowed only in the remaining (right-hand) portion.

See the NSForm class specification for more on the use of NSFormCell.

Initializing an NSFormcCell

—(id)initTextCell: (NSString *)astring Initializes anew NSFormCell with aString asiitstitle.

Determining an NSFormCell’'s Size

— (NSSize)cellSizeFor Bounds: (NSRect)aRect Calculates the NSFormCell’s size within aRect.

Determining Graphic Attributes
—(BOOL)isOpaque Returns whether the NSFormCell is opague.

Modifying the Title
— (void)setTitle:(NSString *)aString Sets the NSFormCell’s title to aString.
— (void)setTitleAlignment: (NSTextAlignment)mode Sets the alignment of the title to mode.

— (void)set TitleFont: (NSFont *)fontObject Sets the font used to draw thetitle to fontObject.

— (void)setTitlewidth: (float)width Sets the width of the NSFormCell’s title field to width.
— (NSString *)title Returns the NSFormCell’s title.

— (NSTextAlignment)titleAlignment Returns the alignment of the title.

— (NSFont *)titleFont Returns the font used to draw thetitle.

1-116 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (float)titlewidth Returns the width of thetitle.
— (float)titlewWidth: (NSSize)aSze Returns the width of the title, constrained to aSze.

Displaying

— (void)drawl nterior WithFrame: (NSRect)cel|[FrameDraws only the editable text portion of the FormCell.
inView: (NSView *)control View

OpenStep Specification—10/19/94 Classes: NSFormCell 1-117

NSHelpPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSHelpPanel.h

Class Description

The NSHelpPanel classisthe central component of the OpenStep help system. It provides the Help panel that
displaysthetext and illustrationsthat constitute your application’s help information. The NSHelpPanel class object
itself stores the table of associations between an application’s user-interface objects and specific passages of the
help text.

Users can display the Help panel by choosing the Help command from an application’s Info menu. The panel
employs the metaphor of abook: It displays atable of contents, body text, and an index. Users can browse through
thetext by clicking entriesin thetable of contentsor index. The panel al so supports hypertext-like help links, which
appear as diamond-shaped images within the text and allow the user to easily follow cross references. By using the
help cursor and clicking user-interface objects, the user can query the Help panel for information associated with
those objects.

The Help Text

An NSHelpPanel abject looksin alanguage-specific directory within the application’sfile package for the text that
it will display. (Some implementations may employ more efficient means of storage than filesand directories.) For
example, if the user’s language preference is English, the panel searches for a directory named Help within the
English.Iproj directory of the application’s file package. It searches for two files: TableOfContents.rtf and
Index.rtfd. There may aso be one or more files containing the body text that the Help panel will display. The
table-of -contents, index, and body files are interconnected by a system of help links and help markers.

A help marker isanamed position holder in the stream of text—in most cases, it'sinvisibleto users. A help link is
a diamond-shaped button embedded in the text. Help links store a file name and, optionally, a help marker name.

When auser clicks a help link, the Help panel displays the named file. If the help link also stores a marker name,
the displayed fileis scrolled to the position of the marker, and the text is selected from the marker’s position to the
end of theline.

Table-of-Contents and Index Files

The table-of-contents and index files are specially designed documents in Rich Text Format (RTF). An
NSHelpPanel object identifies these files by name (TableOfContents.rtf and I ndex.rtfd) and processes them
differently than it does other help files.

The table-of-contents file should contain one entry for each help text file in the help directory. Each entry begins
with ahelp link that stores the name of the destination file for that entry. Following the link isthe text of the entry,

1-118 Chapter 1: Application Kit OpenStep Specification—10/19/94

which may wrap and span several lines. Although the table of contents in the Help panel looks likeit's displayed
by an NSMatrix, it's actually displayed by a modified NSText object. Thus, you can use the full generality of RTF
to format your table of contents.

The index fileis structured similarly although thereis no enforced one-to-one mapping. Generally, the help link
that beginsanindex entry storesboth afile name and amarker name, since an index entry usually pointsto aspecific
word or phrase within afile.

Generic Help Files

An application’s Help directory can contain only table-of-contents and index files, and yet the application may be
ableto display numerous help subjects, each of ageneral nature. Thisisbecause OpenStep applications have access
to generic help files contained in a directory found in a system-specific location.

When a help link is being resolved, the NSHelpPanel first looks for the specified file within the appropriate
language.|proj/Help directory of the application’sfile package. If thefileisn't found, it then searchesthe directory
of generic help files. This search path is used for al links, whether they arein the table of contents, index, or body
text.

If one of these generic help filesisinappropriate for your application, you have two remedies. You can remove the
table-of -contents and index entries that refer to it, or you can override the file with one that’s more appropriate. By
placing afile of the same name and relative location within your application’s Help directory, NSHel pPanel will
display it rather than the generic file.

Associating Help Text with Objects

The NSHelpPanel class stores associations between user-interface objects and help text. When the user pressesthe
Help modifier key (which varies depending on the hardware running the application), a question mark cursor
appears. If the user clicks an object using this cursor, the Help panel displays the associated help text.

You can attach a help file to a user-interface object programmatically, by sending an
attachHelpFile:marker Name:to: message to the NSHelpPanel class object. This method takes a file name, a
marker name, and an object id asits arguments. The detachHelpFrom: message removes such an association.

Just as with help links, an NSHelpPanel searches both the application’s file package and the generic help filesin
attempting to find the file associated with a particular user-interface object.

Hidden Files

Although in general there’s a one-to-one relationship between table-of-contents entries and filesin the Help
directory, you can force a single table-of-contents entry to represent multiple “hidden” files. This can be useful in
reducing the overall length of the table of contents.

Hidden files can’t be accessed from the tabl e of contents; rather, the user must find them by Help-clicking an object
in the application’s user interface, by using the Help Panel’s Find command, by using the index, or by following a
help link from some other file. However, when a hidden file is displayed, the Help panel must select some entry in
the table of contents.

OpenStep Specification—10/19/94 Classes: NSHelpPanel 1-119

Conversely, when the user selects such atable-of-contents entry, the Help panel must display one of thefilesinthe
directory of hiddenfiles; by convention, thisfile must be named Prolog.rtfd. The prolog filetypically informsusers
that they can get help on a particular user-interface object by Help-clicking that object.

The Help panel’s Find button searches through all the files that are connected to table-of -contents entries, first
looking in the application’s Help directory and then in the generic help material. If you don’t want some hidden
filein the generic help material to appear in your application’s Help panel astheresult of aFind operation, override
thefile with an empty file of the same name. Since thefile is empty, no search string will ever befoundinit, and it
will effectively block the generic file of the same name from being searched.

Searching the Help Text

By clicking the Help panel’s Find button, users can search the help text for strings. NSHelpPanel uses two
approaches to locate text containing a specific string. First, it attemptsto find the string in the currently displayed
help text by sending the object that displays the text (an instance of NSCStringText) a
findText:ignoreCase:backwar ds:wrap: message. If the search is unsuccessful, or if the search is continued past
the last occurrence of the string in the current file, the NSHelpPanel object scans for the string in other help files,
both within the application’s help files and within the generic help files. Some implementations of NSHelpPanel
may make use of a previously built index of all the help text to speed this search.

Help Supplements

Since in OpenStep an application may load executable modules dynamically (for example, a drawing program
could allow the user to load a new drawing tool), an NSHelpPanel object provides the ability to load supplemental
help information. When the application loads the module, it sends the NSHelpPanel object an
addSupplement:inPath: message to inform the object of the location of the new help supplement. The

NSHel pPanel object appends the contents of the supplement’s TableOfContents.rtf to the existing table of
contents, so the supplement should have atitle that clearly setsit off from the main part of the table of contents, for
example:

—Pattern Tool Supplement—

Pattern Options

Brick

Stucco

Wood

Tile

Custom
Resizing and Rotating
Blending Patterns
Index to Supplement

The supplement’sindex is only accessible from the table of contents; the Help panel’s Index button displays only
the main index.

1-120 Chapter 1: Application Kit OpenStep Specification—10/19/94

Accessing the Help Panel
+ (NSHelpPanel *)sharedHelpPanel Creates, if necessary, and returns the NSHel pPanel object.

+ (NSHelpPanel *)sharedHelpPanelWithDirectory: (NSString *)helpDirectory
Creates, if necessary, and returns the NSHel pPanel object.
If the panel is created, it loads the help directory
specified by helpDirectory. The help directory must
residein the main bundle. If aHelp panel aready exists
but has loaded a help directory other than
helpDirectory, a second panel will be created.

Managing the Contents

+ (void)setHelpDirectory:(NSString *)helpDirectory Initializes the panel to display the help text found in
helpDirectory. By default, the receiver looks for a
directory named “Help”.

— (void)addSupplement: (NSString *)helpDirectory Append additional help entriesto the Help panel’s table of

inPath:(NSString *)supplementPath contents.
— (NSString *)helpDirectory Returns the absolute path of the help directory.
— (NSString *)helpFile Returns the path of the currently loaded help file.

Attaching Help to Objects

+ (void)attachHelpFile: (NSString *)filename Associates the help file filename and marker Name with
mar ker Name: (NSString *)marker Name anObject.
to:(id)anObject
+ (void)detachHelpFrom: (id)anObject Removes any help information associated with anObject.
Showing Help
— (void)showFile: (NSString *)filename Causes the panel to display the help contained in filename
atMarker: (NSString *)marker Name at markerName.
— (BOOL)showHelpAttachedTo: (id)anObject Causes the panel to display help attached to anObject.
Printing
— (void)print:(id)sender Prints the currently displayed help text.

OpenStep Specification—10/19/94 Classes: NSHelpPanel 1-121

NSImage

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImage.h

Class Description

An NSImage object contains an image that can be composited anywhere without first being drawn in any particular
view. It manages the image by:

Reading image data from the application bundle, from an NSPasteboard, or from an NSData object.
Keeping multiple representations of the same image.

Choosing the representation that's appropriate for a particular data type.

Choosing the representation that’s appropriate for any given display device.

Caching the representations it uses by rendering them in off-screen windows.

Optionally retaining the data used to draw the representations, so that they can be reproduced when needed.
Compositing the image from the off-screen cache to where it's needed on-screen.

Reproducing the image for the printer so that it matches what’s displayed on-screen, yet is the best
representation possible for the printed page.

Automatically using any filtering services installed by the user to convert image data from unsupported
formats to supported formats.

Defining an Image

An image can be created from various types of data:

Encapsulated PostScript code (EPS)

Bitmap datain Tag Image File Format (TIFF)

Untagged (raw) bitmap data

Other image data supported by an NSImageRep subclass registered with the NSImage class

Datathat can be filtered to a supported type by a user-installed filter service

1-122 Chapter 1: Application Kit OpenStep Specification—10/19/94

If dataisplaced in afile (for example, in an application bundle), the NS mage object can access the data whenever
it's needed to create the image. If data is read from an NSData object, the NS mage object may need to store the
data itself.

Images can also be defined by the program, in two ways:

» By drawing theimagein an off-screen window maintained by the NSImage object. Inthis case, the NSImage
maintains only the cached image.

« By defining amethod that can be used to draw the image when needed. Thisallowsthe NSImageto delegate
responsibility for producing the image to some other object.

Image Representations

An NSImage object can keep more than one representation of an image. Multiple representations permit theimage
to be customized for the display device. For example, different hand-tuned TIFF images can be provided for
monochrome and color screens, and an EPS representation or a custom method might be used for printing. All
representations are versions of the same image.

An NSImage returns an NSArray of its representations in response to arepresentations message. Each
representation is a kind of NSImageRep object:

NSEPSImageRep Animagethat can be recreated from EPS datathat’s either stored by the object
or at aknown location in the file system.

NSBitmapl mageRep An image that can be recreated from bitmap or TIFF data.

NSCustomlmageRep An image that can be redrawn by a method defined in the application.

NSCachedlmageRep An image that has been rendered in an off-screen cache from data or

instructions that are no longer available. The image in the cache provides the
only data from which the image can be reproduced.

You can define other NSImageRep subclasses for objects that render images from other types of source data. To
make these new subclasses available to an NSImage object, they need to be added to the NSImageRep classregistry
by invoking theregister | mageRepClass. class method. NSImage determinesthe datatypesthat each subclass can
support by invoking itsimageUnfilter edFileTypes and imageUnfilter edPasteboar dTypes methods.

Choosing Representations

The NSImage object will choose the representation that best matches the rendering device. By default, the choice
ismade according to thefollowing set of ordered rules. Each ruleisapplied inturn until the choice of representation
is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for amonochrome device.

2. Choose a representation with a resolution that matches the resolution of the device, or if no representation
matches, choose the one with the highest resolution.

OpenStep Specification—10/19/94 Classes: NSImage 1-123

By default, any image representation with aresolution that’s an integer multiple of the device resolution is
considered to match. If more than one representation matches, the NSImage will choose the one that’'s
closest to the device resolution. However, you can force resol ution matchesto be exact by passing NO to the
setM atchesOnM ultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over EPS representations,
which don’t. However, you can use the setUsesE PSOnResolutionMismatch: method to have the NSImage
choose an EPS representation in case a resolution match isn’t possible.

3. If dl elsefails, choose the representation with a specified bits per sample that matches the depth of the
device. If no representation matches, choose the one with the highest bits per sample.

By passing NO to the setPr efer sColor M atch: method, you can have the NSImagetry for aresolution match before
acolor match. This essentially inverts the first and second rules above.

If these rulesfail to narrow the choice to a single representation—for example, if the NSImage has two color TIFF
representations with the same resolution and depth—the one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the representation that’s best for the
destination display device, as outlined above. It renders the representation in an off-screen window on the same
device, then compositesit from this cache to the desired location. Subsegquent requests to composite the image use
the same cache. Representations aren’t cached until they’re needed for compositing.

When printing, the NSImage tries not to use the cached image. Instead, it attemptsto render on the printer—using
the appropriate image data, or a delegated method—the best version of the image that it can. Only as alast resort
will it image the cached bitmap.

Image Size

Before an NSIlmage can be used, the size of the image must be set, in units of the base coordinate system. If a
representation is smaller or larger than the specified size, it can be scaled to fit.

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the size will
be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The TIFF fields
“Imagelength” and “ImageWidth” are used to determine the size of an NSBitmapl mageRep.

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they can’t be rotated or flipped.
When composited, an image maintains this orientation, no matter what coordinate system it's composited to. (The
destination coordinate system is used only to determine the location of a composited image, not its size or
orientation.)

It's possible to refer to portions of an image when compositing by specifying arectangle in theimage's coordinate
system, which isidentical to the base coordinate system, except that the origin is at the lower left corner of the
image.

1-124 Chapter 1: Application Kit OpenStep Specification—10/19/94

Named Images

An NSImage object can be identified either by itsid or by aname. Assigning an NSImage aname addsit to atable
kept by the class abject; each namein the database identifies one and only one instance of the class. When you ask
for an NSImage object by name (with theimageNamed: method), the class object returnsthe onefromits database,
which aso includes all the system bitmaps provided by the Application Kit. If there’sno object in the database for
the specified name, the class object triesto create one by checking for a system bitmap of the same name, checking
the name of the application’s own image, and then checking for the image in the application’s main bundle.

If asection or file matches the name, an NSImage is created from the data stored there. You can therefore create
NSImage objects simply by including EPS or TIFF data for them within the executable file, or in filesinside the
application’s file package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter services for converting unsupported
image file types to supported image file types. The class method imageFileTypes returns an array of al file types
from which NSImage can create an instance of itself. Thislist includes al file types supported by registered
subclasses of NSImageRep, and those types that can be converted to supported file types through a user-installed
filter service.

Initializing a New NSImage Instance

— (id)initByReferencingFile: (NSString *)filename Initializesthe new NSImage from the datain filename. The
fileis assumed to persist and may be reread later if the
NSImage is resized or otherwise modified.

— (id)initWithContentsOfFile: (NSString *)filename
Initializes the new NSImage from the data in filename.

— (id)initWithData: (NSData *)data Initializes the new NSImage from data.

— (id)initWithPasteboar d: (N SPasteboard *)pasteboard
Initializes the new NSImage with the datain pasteboard.

— (id)initWithSize:(NSSize)aSze Initializes the new NSImage to the specified size.

Setting the Size of the Image
— (void)setSize: (NSSize)aSze Sets the size of the image to aSze in base coordinates.

— (NSSize)size Returns the size of the image.
Referring to Images by Name

+ (id)imageNamed: (NSString *)name Returns the NSImage object having name. Searches the
main bundle for the image if necessary.

OpenStep Specification—10/19/94 Classes: NSimage 1-125

— (BOOL)setName: (NSString *)name

— (NSString *)name

Specifying the Image

Assigns name to be the receiver’s name. Returns NO if
name is aready in use; otherwise, returns YES.

Returns the receiver’'s name.

— (void)addRepresentation: (NSImageRep *)imageRep

Adds imageRep to the receiver’slist of representations.

— (void)addRepresentations: (NSArray *)imageRepArray

— (void)lockFocus

AddstheimageReps from imageRepArray to the receiver’'s
list of representations.

Prepares for drawing in the best representation.

— (void)lock FocusOnRepr esentation: (NSImageRep *)imageRep

— (void)unlockFocus

Using the Image

— (void)compositeToPoint: (NSPoint)aPoint
oper ation: (NSCompositingOperation)op

— (void)compositeToPoint: (NSPoint)aPoint
fromRect: (NSRect)aRect
oper ation: (NSCompositingOperation)op

— (void)dissolveToPoaint: (N SPoint)aPoint
fraction: (float)aFloat

— (void)dissolveToPoint: (NSPoint)aPoint
fromRect: (NSRect)aRect
fraction: (float)aFloat

Choosing Which Image Representation to Use

— (void)setPrefer sColor M atch: (BOOL)flag
— (BOOL)prefersColorMatch

Prepares for drawing in imageRep.

Balances a previous lock Focus or
lock FocusOnRepresentation:.

Composites the image to aPoint using the operation op.

Composites the aRect portion of the image to aPoint using
the operation op.

Composites the image to aPoint using the dissolve
operator. aFloat is avalue from 0.0 to 1.0 that
determines how much of the resulting composite comes
from the receiver.

Composites the aRect portion of the image to aPoint using
the dissolve operator. aFloat isavalue from 0.0 to 1.0
that determines how much of the resulting composite
comes from the receiver.

Determines whether color matches are preferred.

Returns whether color matches are preferred.

— (void)setUsesEPSOnResolutionM ismatch: (BOOL)flag

1-126 Chapter 1: Application Kit

Sets whether to use EPS representations on mismatch.

OpenStep Specification—10/19/94

— (BOOL)usesEPSONnResolutionMismatch Returns whether to use EPS representations on mismatch.

— (void)setM atchesOnM ultipleResolution: (BOOL)flag
Sets whether resolution multiples match.

— (BOOL)matchesOnM ultipleResolution Returns whether resolution multiples match.

Getting the Representations

— (NSImageRep *)bestRepresentationFor Device: (NSDictionary *)deviceDescription
Returns the best representation for the device described by
deviceDescription. If deviceDescription isnil, the
current deviceis assumed. See NSGraphics.h for
appropriate dictionary keys and values.

— (NSArray *)representations Returns an array of al the representations.

— (void)removeRepresentation: (NSImageRep *)imageRep
Removes imageRep from the receiver’slist of
representations.

Determining How the Image is Stored

— (void)setCachedSepar ately: (BOOL)flag Sets whether representations are cached separately.

— (BOOL)isCachedSepar ately Returns whether representations are cached separately.

— (void)setDataRetained: (BOOL)flag Sets whether image data is retained by the object after the
image is cached.

—(BOOL)isDataRetained Returns whether image datais retained.

— (void)setCacheDepthM atchesl mageDepth: (BOOL)flag
Sets whether the default depth limit applies to caches.

— (BOOL)cacheDepthM atchesl mageDepth Returns whether the default depth limit appliesto caches.

Determining How the Image is Drawn

—(BOOL)isvalid Returns YES to indicate that the receiver’'simageis valid.
— (void)set ScalesWWhenResized: (BOOL)flag If flag is YES, representations are scaled to fit.
— (BOOL)scaleswhenResized Returns whether representations are scaled to fit.

— (void)setBackgroundColor: (NSColor *)aColor Sets the background color of the image to aColor.

— (NSColor *)backgroundColor Returns the background color of the image.

OpenStep Specification—10/19/94 Classes: NSImage 1-127

— (BOOL)drawRepresentation: (NSImageRep *)imageRep

inRect: (NSRect)aRect Overridden to have imageRep draw the representation in
aRect.
— (void)recache Invalidates caches of all representations, so they will be
redrawn.

Assigning a Delegate
— (void)setDelegate: (id)anObject Makes anObject the delegate of the NSImage.
— (id)delegate Returns the delegate of the NSImage.

Producing TIFF Data for the Image

— (NSData*)TIFFRepresentation Returns a data object containing TIFF for all
representations, using their default compressions.

— (NSDhata*)TI FFRepresentationUsingCompression: (NSTIFFCompression)comp
factor: (float)aFloat Returns a data object containing TIFF for al the
representations.

Managing NSImageRep Subclasses

+ (NSArray *)imageUnfilteredFileTypes Returns an array of file types recognized by the NSImage
without filtering. Thislist comes from all registered
NSImageReps.

+ (NSArray *)imageUnfilteredPasteboar dTypes
Returns an array of pasteboard types recognized by the
NSImage.

Testing Image Data Sources

+ (BOOL)canl nitWithPasteboar d: (NSPasteboard *) pasteboard
Returns YES if the receiver can create a representation
from pasteboard; otherwise, returns NO.

+ (NSArray *)imageFileTypes Returns an array of supported image datafile types.
+ (NSArray *)imagePasteboar dTypes Returns an array of supported pasteboard types.

Methods Implemented by the Delegate

— (NSImage *)imageDidNotDr aw: (id)sender Responds to message that image couldn’t be composited
inRect: (NSRect)aRect into aRect.

1-128 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSImageRep

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImageRep.h

Class Description

NSImageRep is an abstract superclass; each of its subclasses knows how to draw an image from a particular kind
of sourcedata. While an NSImageRep subclasscan be used directly, it’ stypically used through an NSl mage object.
An NSImage manages a group of representations, choosing the best one for the current output device.

There are four subclasses defined in the Application Kit:

Subclass Source Data

NSBitmapl mageRep Tag Image File Format (TIFF) and other bitmap data
NSEPSImageRep Encapsulated PostScript code (EPS)
NSCustomlmageRep A delegated method that can draw the image
NSCachedlmageRep A rendered image, usually in an off-screen window

You can define other NSImageRep subclasses for objects that render images from other types of source
information. New subclasses must be added to the NSImageRep class registry by invoking the
registermageRepClass: class method. The NSImageRep subclass informs the registry of the data typesit can
support through itsimageUnfilter edFileTypes, imageUnfilteredPasteboar dTypes, and canl nitWithData: class
methods. Once an NSImageRep subclassis registered, an instance of that subclassis created anytime NSImage
encounters the type of data handled by that subclass.

Creating an NSImageRep

+ (id)imageRepWithContentsOfFile: (NSString *)filename
In subclasses that respond to imageFileTypes and
imageRepWithData:, returns an object that has been
initialized with the datain filename. NSImageRep's
implementation returns an instance of the appropriate
registered subclass.

OpenStep Specification—10/19/94 Classes: NSiImageRep 1-129

+ (NSArray *)imageRepswWithContentsOfFile: (NSString *)filename

In subclasses that respond to imageFileTypes and
imageRepWithData: (or imageRepWithData:),
returns an array of objects that have been initialized
with the dataiin filename. NSImageRep’s
implementation returns an array of objects (each an
instance of the appropriate registered subclass) that
have been initialized with the data in filename.

+ (id)imageRepWithPasteboar d: (NSPasteboard *)pasteboard

In subclasses that respond to imagePasteboar dTypes and
imageRepWithData:, returns an object that has been
initialized with the datain pasteboard. NSImageRep's
implementation returns an instance of the appropriate
registered subclass.

+ (NSArray *)imageRepsWithPasteboar d: (NSPasteboard *)pasteboard

Checking Data Types
+ (BOOL)canl nitWithData: (NSData *)data

In subclasses that respond to imagePasteboar dTypes and
imageRepsWithData: (or imageRepWithData:),
returns an array of objects that have been initialized
with the datain pasteboard. NSImageRep's
implementation returns an array of objects (each an
instance of the appropriate registered subclass) that
have been initialized with the data in pasteboard.

Overridden in subclasses to return Y ES if the receiver can
initialize itself from data.

+ (BOOL)canl nitWithPasteboar d: (N SPasteboard *) pasteboard

+ (NSArray *)imageFileTypes
+ (NSArray *)imagePasteboar dTypes

+ (NSArray *)imageUnfilteredFileTypes

+ (NSArray *)imageUnfilteredPasteboar dTypes

1-130 Chapter 1: Application Kit

Overridden in subclasses to returnY ES if the receiver can
initialize itself from pasteboard.

Returns an array of strings representing all file types.

Returns an array of strings representing all pasteboard
types.

Returns an array of strings representing directly supported
filetypes.

Returns an array of strings representing directly supported
pasteboards.

OpenStep Specification—10/19/94

Setting the Size of the Image
— (void)setSize: (NSSize)aSze
—(NSSize)size

Specifying Information about the Representation
— (int)bitsPer Sample
— (NSString *)color SpaceName
—(BOOL)hasAlpha
—(BOOL)isOpaque
— (int)pixelsHigh
— (int)pixelswide
— (void)setAlpha: (BOOL)flag

— (void)setBitsPer Sample: (int)anint

— (void)setColor SpaceName: (NSString *)aString
— (void)setOpaque: (BOOL)flag
— (void)setPixelsHigh: (int)anl nt

— (void)setPixelsWide: (int)anint

Drawing the Image

—(BOOL)draw
— (BOOL)drawAtPoint: (NSPoint)aPoint

— (BOOL)drawl nRect: (NSRect)aRect

OpenStep Specification—10/19/94

Sets the size of theimage.

Returns the size of theimage.

Returns the number of bits per pixel in each component.
Returns the name of the image's color space.

Returns whether there is a coverage component.
Returns whether the representation is opague.

Returns the height specified in the image data.

Returns the width specified in the image data.

Informs the receiver whether there is a coverage
component.

Informs the receiver there are anint bits/pixel in a
component.

Informs the receiver of the image’s color space.
Informs the receiver of the image's opacity.

Informs the receiver that its datais for an image anint
pixels high.

Informs the receiver that its datais for an image anint
pixelswide.

Implemented by subclasses to draw the image.

Modifies current coordinates so the image is drawn at
aPoint.

Modifies current coordinates so the image is drawn in
aRect.

Classes: NSimageRep 1-131

Managing NSImageRep Subclasses

+ (Class)imageRepClassFor Data: (NSData*)data Returnsthe NSImageRep subclassthat handl esdata of type
data.

+ (Class)imageRepClassFor FileType: (NSString *)type
Returns the NSImageRep subclass that handles data of file

type type.

+ (Class)imageRepClassFor Pasteboar d Type: (NSString *)type
Returns the NSImageRep subclass that handles data of
pasteboard type type.

+ (void)register | mageRepClass: (Class)imageRepClass
Adds imageRepClass to the registry of available
NSImageRep classes. This method posts the
N SImageRepRegi stryChangedNotifi cation notification
with the receiving object to the default notification
center.

+ (NSArray *)registeredl mageRepClasses Returns the names of the registered NSImageRep classes.

+ (void)unregisterl mageRepClass: (Class)imageRepClass
Removes imageRepClass from the registry of available
NSImageRep classes. This method posts the
N SImageRepRegi stryChangedNotification notification
with the receiving object to the default notification
center.

1-132 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSMatrix

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSMatrix.h

Class Description

NSMatrix isaclass used for creating groups of NSCells that work together in various ways. It includes methods
for arranging NSCells in rows and columns, either with or without space between them. NSCellsin an NSMatrix
are numbered by row and column, each starting with O; for example, the top left NSCell would be at (0, 0), and the
NSCell that's second down and third across would be at (1, 2).

The cell objectsthat an NSMatrix contains are usually of a single subclass of NSCell, but they can be of multiple
subclasses of NSCell. The only restriction isthat al cell objects must be the same size. An NSMatrix can be set up
to create new NSCells by copying a prototype object, or by allocating and initializing instances of aspecific NSCell
class.

An NSMatrix adds to NSControl’s target/action paradigm by allowing a separate target and action for each of its
NSCellsin addition to its own target and action. It also allows for an action message that’s sent when the user
double-clicksan NSCell, and which issent in addition to the single-click action message. If an NSCell doesn’t have
an action, the NSMatrix sendsits own action to its own target. If an NSCell doesn’'t have atarget, the NSMatrix
sends the NSCell’s action to its own target. The double-click action of an NSMatrix is aways sent to the target of
the NSMatrix.

Since the user might press the mouse button while the cursor is within the NSMatrix and then drag the mouse
around, NSMatrix offers four “selection modes’ that determine how NSCells behave when the NSMatrix is
tracking the mouse:

* NSTrackModeMatrix is the most basic mode of operation. In this mode the NSCells are asked to track the
mouse with trackM ouse:inRect: of View: untilM ouseUp: whenever the mouse isinside their bounds. No
highlighting is performed. An example of this mode might be a*“ graphic equalizer” NSMatrix of dliders,
where moving the mouse around causes the siders to move under the mouse.

» NSHighlightModeMatrix is amodification of NSTrackModeMatrix. In thismode, an NSCell is highlighted
before it’s asked to track the mouse, then unhighlighted when it’'s done tracking. Thisis useful for multiple
unconnected NSCells that use highlighting to inform the user that they are being tracked (like push-buttons
and switches).

* NSRadioModeMatrix is used when you want no more than one NSCell to be selected at atime. It can be
used to create aset of buttons of which one and only oneis selected (there’s the option of alowing no button
to be selected). Any time an NSCell is selected, the previously selected NSCell is unselected. The canonical
example of this mode is a set of radio buttons.

OpenStep Specification—10/19/94 Classes: NSMatrix 1-133

* NSListModeMatrix is the opposite of NSTrackModeMatrix. NSCells are highlighted, but don’t track the
mouse. This mode can be used to select arange of text values, for example. NSMatrix supports the standard
multiple-selection paradigms of dragging to select, using the shift key to make discontinuous selections, and
using the aternate key to extend selections.

Initializing the NSMatrix Class
+ (Class)cellClass Returns the default class used to make cells.
+ (void)setCellClass: (Class)classld Sets the default class used to make cells.

Initializing an NSMatrix Object

— (id)initWithFrame: (NSRect)frameRect Initializes anew NSMatrix object in frameRect.

— (id)initWithFrame: (NSRect)frameRect Initializes anew NSMatrix object in frameRect, with
mode: (int)aMode aMode as the selection mode, classld as the class used
cellClass:(Class)classid to make new cells, and having rowsHigh rows and
number OfRows: (int)rowsHigh colsWide columns.
number OfColumns:; (int)colsWde

— (id)initWithFrame: (N SRect)frameRect Initializes anew NSMatrix object with the given values
mode: (intjaMode with aMode as the selection mode, aCell asthe
prototype: (NSCell *)aCell prototype copied to make new cells, and having
number OfRows: (int)rowsHigh rowsHigh rows and cols\Wide columns.

number Of Columns: (int)colsWide

Setting the Selection Mode
— (NSMatrixMode)mode Returns the sel ection mode of the matrix.

— (void)setM ode: (NSM atrixMode)aMode Sets the selection mode of the matrix.

Configuring the NSMatrix

— (BOOL)allowsEmptySelection Returns whether it's possible to have no cells selected.

— (BOOL)isSelectionByRect Returns whether a user can drag arectangular selection.
— (void)setAllowsEmptySelection: (BOOL)flag Sets whether it's possible to have no cells selected.

— (void)setSelectionByRect: (BOOL)flag Sets whether a user can drag a rectangular selection (the

default isYES). If flag isNO, selectionison a
row-by-row basis.

1-134 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the Cell Class
— (Class)cellClass
—(id)prototype
— (void)setCellClass: (Class)classld
— (void)setPrototype: (NSCell *)aCell

Laying Out the NSMatrix

— (void)addColumn

Returns the subclass of NSCell used to make new cells.
Returns the prototype cell copied to make new cells.
Sets the subclass of NSCell used to make new cells.

Sets the prototype cell copied to make new cells.

Adds a new column of cellsto theright of the last column.

— (void)addColumnWithCells:(NSArray *)cellArray Adds anew column of cells, using those contained in

— (void)addRow
— (void)addRowWithCells:(NSArray *)cell Array

— (NSRect)cellFrameAtRow: (int)row
column: (int)column

— (NSSize)cdlSize

— (void)getNumber OfRows: (int *)rowCount
columns:(int *)columnCount

— (void)insertColumn:(int)column

cellArray.
Adds anew row of cells below the last row.

Adds anew row of cells, using those contained in
cellArray.

Returns the frame rectangle of the cell at row and column.

Returns the width and height of cellsin the matrix.

Gets the number of rows and columns in the matrix.

Inserts anew column of cells at column, creating as many
as needed to make the matrix column columns wide.

— (void)insertColumn: (int)column withCells: (NSArray *)cellArray

— (void)insertRow: (int)row

Insertsanew row of cellsat column, using those contained
in cellArray.

Inserts a new row of cells at row, creating as many as
needed to make the matrix row rows wide.

— (void)inser tRow: (int)row withCells: (NSArray *)cell Array

— (NSSize)inter cell Spacing

— (NSCéll *)makeCellAtRow: (int)row
column: (int)column

— (void)putCell: (NSCell *)newCell
atRow: (int)row
column: (int)column

OpenStep Specification—10/19/94

Inserts a new row of cells at row, using those contained in
cellArray.

Returns the vertical and horizontal spacing between cells

Createsanew cell at row, column in the matrix and returns
it.

Replaces the cell at row and column with newCell.

Classes: NSMatrix 1-135

— (void)removeColumn: (int)column
— (void)removeRow: (int)row

— (void)renewRows: (int)newRows
columns: (int)newColumns

— (void)setCellSize: (NSSize)aSze

— (void)setl nter cell Spacing: (NSSize)aSize

Removes the column at column, releasing the cells.
Removes the row at row, releasing the cells.

Changes the number of rows and columnsin the receiver
without freeing any cells.

Sets the width and height of al cellsin the matrix.

Setsthe vertical and horizontal spacing between cells.

— (void)sortUsingFunction: (int (*)(id elementl, id element2, void * user Data))comparator

context: (void *)context

— (void)sortUsingSelector : (SEL)comparator

Finding Matrix Coordinates

— (BOOL)getRow: (int *)row
column:(int *)column
for Point: (NSPoint)aPoint

— (BOOL)getRow: (int *)row
column:(int *)column
of Cell: (NSCell *)aCell

Modifying Individual Cells

— (void)setState: (int)value
atRow: (int)row
column: (int)column

Selecting Cells

— (void)deselectAlICélls

— (void)deselectSelectedCell
— (void)selectAll: (id)sender

— (void)selectCell AtRow: (int)row
column: (int)column

—(BOOL)sdlectCellWithTag: (int)anint

1-136 Chapter 1: Application Kit

Sorts the receiver’'s cells in ascending order as defined by
the comparison function comparator. context is passed
as the function’s third argument.

Sorts the receiver’s cells in ascending order as defined by
the comparison method comparator.

Gets the row and column position corresponding to aPoint.
Returns YES if aPoint is within the matrix;
NO otherwise.

Gets the row and column position of aCell.
Returns YES if aCell isin the matrix; NO otherwise.

Sets the state of the cell at row and column to value.

Clearsthereceiver’'s selection, assuming that the NSMatrix
allows an empty selection.

Deselects the selected cell.
Selects all the cellsin the matrix.

Selects the cell at row and col.

Selects the cell with the tag anint.

OpenStep Specification—10/19/94

— (id)selectedCell

— (NSArray *)selectedCells
— (int)selectedColumn

— (int)selectedRow

— (void)setSelectionFrom: (int)startPos
to: (int)endPos
anchor : (int)anchor Pos
highlight:(BOOL)flag

Finding Cells

— (id)cellAtRow: (int)row
column: (int)column

— (id)cellWithTag: (int)ani nt
—(NSArray *)cells

Modifying Graphic Attributes
— (NSColor *)backgroundColor
— (NSCaolor *)cellBackgroundColor
— (BOOL)drawsBackground

— (BOOL)drawsCellBackground

— (void)setBackgroundColor:(NSColor *)aColor

— (void)setCellBackgroundColor: (NSColor *)aColor

— (void)setDrawsBackground: (BOOL)flag

— (void)setDrawsCellBackground: (BOOL)flag

OpenStep Specification—10/19/94

Returns the most recently selected cell or nil if no cell has
been selected.

Returns an array containing the selected cells.

Returns the column of the selected cell or —1 if no column
has been selected.

Returnstherow of the selected cell or -1 if no row has been
selected.

Selects the cellsin the matrix from startPos to endPos,
counting in row order from the upper |eft, as though
anchorPoswere the number of thelast cell selected, and
highlighting the cells according to flag.

Returnsthe cell at row row and column col.

Returnsthe cell having anint asitstag.

Returns the matrix’s array of cells.

Returns the color of the background between cells.
Returns the color of the background within cells.

Returns whether the receiver draws the background
between cells.

Returns whether the receiver draws the background within
cells.

Sets the color of the background between cellsto aColor.

Sets the color of the background within cellsto aColor.

Sets whether the receiver draws the background between
cells.

Sets whether the receiver draws the background within
cells.

Classes: NSMatrix 1-137

Editing Text in Cells
— (void)select Text: (id)sender Selectsthe text in thefirst or last editable cell.

— (id)select TextAtRow: (int)row Selects the text of the cell at row, column in the matrix.
column: (int)column

— (void)textDidBeginEditing: (NSNotification *)natification

Invoked when there’s achange in the text after the receiver
gainsfirst responder status. Default behavior is pass to
this message on to the text delegate. This method posts
the NSControl TextDidBeginEditingNotification
notification with the receiving object and, in the
notification’s dictionary, the text object (with the key
NSFieldEditor) to the default notification center.

— (void)textDidChange: (NSNotification *)notification
Invoked upon a key-down event or paste operation that

changes the receiver’s contents. Default behavior isto
pass this message on to the text delegate. This method
posts the NSControl TextDidChangeNotification
notification with the receiving object and, in the
notification's dictionary, the text object (key
NSFieldEditor) to the default notification center.

— (void)textDidEndEditing: (NSNotification *)notification
Invoked when text editing ends and then forwarded to the
text delegate. This method posts the notification
NSControl TextDidEndEditingNotification with the
receiving object and, in the notification’sdictionary, the
text object (with the key NSFieldEditor) to the default
notification center.

— (BOOL)textShouldBeginEditing: (NSText *)textObject
Invoked to let the NSTextField respond to impending
changesto its text and then forwarded to the text
delegate.

— (BOOL)text ShouldEndEditing: (NSText *)textObject
Invoked to let the NSTextField respond to impending loss
of first responder status and then forwarded to the text
delegate.

Setting Tab Key Behavior

— (id)next Text Returns the object to be selected when the user presses Tab
while editing the last text cell.

1-138 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (id)previousText

— (void)setNextText: (id)anObject

— (void)setPreviousText: (id)anObject

Assigning a Delegate
— (void)setDelegate: (id)anObject
— (id)delegate

Resizing the Matrix and Cells
— (BOOL)autosizesCells
— (void)setAutosizesCells. (BOOL)flag
— (void)setValidateSize: (BOOL)flag
— (void)sizeToCells

Scrolling

—(BOOL)isAutoscroll

— (void)scrollCdIToVisibleAtRow: (int)row

column: (int)column

— (void)setAutoscroll: (BOOL)flag

— (void)setScrollable:(BOOL)flag

Displaying

— (void)drawCellAtRow: (int)row
column: (int)column

— (void)highlightCell: (BOOL)flag
atRow: (int)row
column: (int)column

OpenStep Specification—10/19/94

Returns the object to be selected when the user presses
Shift-Tab while editing the first text cell.

Sets the object to be selected when the user presses Tab
while editing the last text cell.

Sets the object to be selected when user presses Shift-Tab
while editing the first text cell.

Sets the delegate for messages from the field editor.
Returns the delegate for messages from the field editor.

Returns whether the matrix resizesits cells automatically.
Sets whether the matrix resizes its cells automatically.
Sets whether the cell size needs to be recal cul ated.

Resizes the matrix to fit its cells exactly.

Returns whether the matrix automatically scrolls when
dragged in.

Scrolls the matrix so that the cell at row and column is
visible.

Sets whether the matrix automatically scrolls when
dragged in.

If flagis YES, makes al the cells scrollable.

Displaysthe cell at row and col.

Highlights (or unhighlights) the cell at row, col.

Classes: NSMatrix 1-139

Target and Action

— (SEL)doubleAction Returns the action method for double clicks.
— (void)setDoubleAction: (SEL)aSel ector Sets the action method used on double-clicks to aSelector.
—(SEL)errorAction Returns the action method for editing errors.
—(BOOL)sendAction Sendsthe selected cell’s action, or the NSMatrix’saction if

the cell doesn’t have one.

— (void)sendAction: (SEL)aSelector Sends aSdlector to anObject, for al cellsif flagis YES.
to: (id)anObject
for AllCélls;(BOOL)flag

— (void)sendDoubleAction Sends the action corresponding to a double-click.

— (void)setErrorAction: (SEL)aSelector Sets the action method for editing errors to aSelector.

Handling Event and Action Messages
— (BOOL)acceptsFirstM ouse: (NSEvent *)theEvent Returns NO only if receiver’smodeis NSListModeM atrix.

— (void)ymouseDown: (NSEvent *)theEvent Responds to a mouse-down event. A mouse-down event in
atext cell initials editing mode. A double-click in any
cell type except atext cell sendsthe double-click action
of the NSMatrix (if thereis one) in addition to the
single-click action.

— (int)mouseDownFlags Returns the event flags in effect at start of tracking.

— (BOOL)performKeyEquivalent: (NSEvent *)theEvent
Simulates a mouse click in the appropriate cell.

Managing the Cursor

— (void)resetCur sor Rects Resets cursor rectangles so that the cursor becomes an
|-beam over text cells.

1-140 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSMenu

Inherits From: NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSMenu.h

Class Description

This class defines an object that manages an application’s menus. An NSMenu object displays alist of itemsthat a
user can choose from. When an item is clicked, it may either issue a command directly or bring up another menu
(asubmenu) that offers further choices. An NSMenu object’s choices are implemented as a column of
NSMenuCellsin an NSMatrix.

Each NSMenuCell can be configured to send its action message to atarget, or to bring up a submenu. When the
user clicks a submenu item, the submenu is displayed on the screen, attached to its supermenu so that if the user
dragsthe supermenu, the submenu followsit. A submenu may also be torn away from its supermenu, in which case
it displays a close button.

Exactly one NSMenu created by the application is designated as the main menu for the application (with
NSApplication’s setM ainM enu: method). This menu is displayed on top of all other windows whenever the
application is active, and should never display aclose button (because the main menu doesn’t have a supermenu).

See the NSMenuCell and NSMatrix class specificiations for more details.

Controlling Allocation Zones

+ (NSZone *)menuZone
+ (void)setM enuZone: (NSZone *)zone
Initializing a New NSMenu

— (id)initWithTitle:(NSString *)aTitle

Setting Up the Menu Commands

—(id)addltemWithTitle:(NSString *)aString
action: (SEL)aSelector
keyEquivalent: (NSString *)char Code

OpenStep Specification—10/19/94

Returns the zone from which NSMenus should be
allocated, creating oneif necessary.

Sets the zone from which NSMenus should be all ocated.

Initializes and returns anew NSMenu using aTitle for its
title.

Adds a new item with title aString, action aSdlector, and
key equivalent char Code to the end of the NSMenu.
Returns the new NSMenuCell.

Classes: NSMenu 1-141

— (id)insertltemWithTitle:(NSString *)aString
action: (SEL)aSdlector
keyEquivalent: (NSString *)charCode
atlndex: (unsigned int)index

— (NSMatrix *)itemMatrix

— (void)setltemMatrix: (NSMatrix *)aMatrix

Finding Menu Items
— (id)cellWithTag: (int)aTag
Building Submenus
— (NSMenuCell *)setSubmenu: (NSMenu *)aMenu
forltem:(NSMenuCell *)aCell

— (void)submenuAction: (id)sender

Managing NSMenu Windows
— (NSMenu *)attachedM enu

— (BOOL)isAttached

— (BOOL)isTornOff

Adds anew item at index having the title a3tring, action
aSdlector, and key equivalent charCode. Returns the
new NSMenuCell.

Returns the NSMatrix of NSMenuCell items.

Replaces the current matrix of items with aMatrix.

Returns the NSMenuCell that has aTag asiits tag.

Makes aMenu a submenu controlled by aCell.

Activates a submenu attached to sender’s NSMenu.

Returns the NSMenu attached to the receiver or nil if
there's no such object.

ReturnsY ESif thereceiver isattached to another menu and
NO otherwise.

Returns NO if the receiver is attached to another menu (or
if it'sthe main menu) and Y ES otherwise.

— (NSPoint)locationFor Submenu: (NSMenu *)aSubmenu

— (void)sizeToFit

— (NSMenu *)supermenu

Displaying the Menu
— (BOOL)autoenablesltems

— (void)setAutoenablesl tems: (BOOL)flag

1-142 Chapter 1: Application Kit

Determines where to display an attached submenu when
it's brought up.

Resizes the receiver to exactly fit the command items.

Returns the receiver’'s supermenu.

Returns whether the receiver enables and disablesits
NSMenuCells. (See the NSMenuA ctionResponder
informal protocol.)

Sets whether the receiver enables and disablesits
NSMenuCells. (See the NSMenuA ctionResponder
informal protocol.)

OpenStep Specification—10/19/94

NSMenucCell

Inherits From: NSButtonCell : NSActionCell : NSCell : NSObject
Conforms To: NSCoding, NSCopying (NSCell)

NSObject (NSObject)
Declared In: AppKit/NSMenuCell.h

Class Description

NSMenuCell is a subclass of NSButtonCell that defines objects that are used in menus. NSMenuCells draw their
text left-justified and show an optional key equivalent or submenu arrow on the right. See the NSMenu class

specification for more information.

Checking for a Submenu

— (BOOL)hasSubmenu

Managing User Key Equivalents

+ (void)setUsesUser KeyEquivalents: (BOOL)flag

+ (BOOL)usesUser KeyEquivalents

— (NSString *)user KeyEquivalent

OpenStep Specification—10/19/94

Returns YES if the receiver has a submenu.

If flag is YES, NSMenuCells conform to user preferences
for key equivalents; otherwise, the key equivalents
originally assigned to the NSMenuCells are used.

Returns YESif NSMenuCells conform to user preferences
for key equiva ents; otherwise, returns NO.

Returns the user-assigned key equivalent for the
NSMenuCell.

Classes: NSMenuCell 1-143

NSOpenPanel

Inherits From: NSSavePand : NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSOpenPanel .h

Class Description

NSOpenPanel provides the Open panel of the OpenStep user interface. Applications use the Open panel asa
convenient way to query the user for the name of afile to open. The Open panel can only be run modally.

Most of this class's behavior is defined by its superclass, NSSavePanel. NSOpenPanel adds to this behavior by:
» Letting you specify the types (by file-name extension) of the items that will appear in the panel
 Letting the user select files, directories, or both
» Letting the user select multipleitems at atime

Typicaly, you access an NSOpenPanel by invoking the openPanel method. When the class receives an openPanel
message, it tries to reuse an existing panel rather than create anew one. If apanel is reused, its attributes are reset
to the default values so that the effect is the same as receiving a new panel. Because Open panels may be reused,
you shouldn’t modify the instance returned by openPanel, except through the methods listed bel ow (and those
inherited from its superclass, NSSavePanel). For example, you can set the panel’s title and whether it allows
multiple selection, but not the arrangement of the buttons within the panel. If you must modify the Open panel
substantially, create and manage your own instance using the alloc... and init... methods rather than the openPanel
method.

Accessing the NSOpenPanel

+ (NSOpenPanel *)openPanel Returns an NSOpenPanel object having default

initialization.
Filtering Files

—(BOOL)allowsM ultipleSelection Returns YES if the panel allows the user to open multiple
files (and directories) at atime.

— (BOOL)canChooseDirectories Returns YES if the panel allows the user to choose
directories.

— (BOOL)canChooseFiles Returns YES if the panel allows the user to choose files.

1-144 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setAllowsM ultipleSelection: (BOOL)flag

— (void)setCanChooseDir ectories: (BOOL)flag
— (void)setCanChooseFiles: (BOOL)flag

Querying the Chosen Files

— (NSArray *)filenames

Running the NSOpenPanel
— (int)runM odal For Types: (NSArray *)fileTypes

— (int)runM odal For Dir ectory: (NSString *)path
file:(NSString *)filename
types: (NSArray *)fileTypes

OpenStep Specification—10/19/94

Sets whether the user can open multiple files (and
directories) at atime.

Sets whether the user can choose directories.

Sets whether the user can choose files.

Returns an array containing the names of the selected files
and directories.

Invokes the runM odal For Directory:file:types: method,
using thelast directory from which afile was chosen as
the path argument. Returns the value returned by that
method.

Displays the panel and beginsits event loop. The panel
displaysthe files in path that match the typesin
fileTypes (an array of NSString objects), with filename
selected. Returns NSOK Button (if the user clicksthe
OK button) or NSCancelButton (if the user clicks the
Cancel button).

Classes: NSOpenPanel 1-145

NSPagelayout

Inherits From: NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSPagelayout.h

Class Description

NSPagel ayout is atype of NSPanel that queries the user for information such as paper type and orientation. This
informationisstored in an NSPrintInfo object, and islater used when printing. The NSPagel ayout panel iscreated,
displayed, and run (in amodal loop) when arunPagel ayout: message is sent to the NSApplication object. By
default, this message is sent up the responder chain when the user clicks the Page Layout menu item.

Typically, you access an NSPagel ayout panel by invoking the pagel. ayout method. When the class receives a
pagel ayout message, it tries to reuse an existing panel rather than create a new one. If a panel isreused, its
attributes are reset to the default values so that the effect isthe same asreceiving anew panel. Because Page L ayout
panels may be reused, you shouldn’t modify the instance returned by pagel ayout, except through the methods
listed below. If you must modify the Page Layout panel in other waysthan those allowed by its methods, create and
manage your own instance using the alloc... and init... methods rather than the pagel ayout method.

You can add your own controls to the Page Layout panel through the setAccessoryView: method. The panel is
automatically resized to accommodate the NSView that you've added. Note that you can't retrieve the

NSPagel ayout’s settings through messages to the page layout panel object—NSPagelayout does not have
accessor methods to obtain the state of its controls. If controlsyou add through an accessory view need to know the
values of the existing controls in the page layout panel (or vice versa), access NSPagel ayout’s controls using the
tags defined in AppKit/NSPagel ayout.h as arguments to viewWithTag: messages to the page layout panel
object. Controls thus returned can then be queried for their state.

Creating an NSPageLayout Instance

+ (NSPagelayout *)pagel ayout Returns a default NSPagelayout object.

Running the Panel

—(int)runM odal Displays the panel and beginsits event loop. The pandl’s
values are recorded in the shared NSPrintInfo object.

— (int)runM odalWithPrintl nfo: (NSPrintInfo *)pl nfo
Displays the panel and beginsits event loop. The panel’s
values are recorded in the plnfo, the supplied
NSPrintinfo object.

1-146 Chapter 1: Application Kit OpenStep Specification—10/19/94

Customizing the Panel
— (NSView *)accessoryView

— (void)setAccessoryView: (NSView *)aView
Updating the Panel’s Display

— (void)convertOldFactor : (float *)old
newFactor : (float *)new

— (void)pickedButton: (id)sender

— (void)pickedOrientation: (id)sender
— (void)pickedPaper Size: (id)sender
— (void)pickedUnits: (id)sender

Communicating with the NSPrintinfo Object
— (NSPrintInfo *)printinfo

— (void)readPrintInfo

— (void)writePrintlnfo

OpenStep Specification—10/19/94

Returns the NSPagel_ayout’s accessory View.
Adds aView to the panel.

Returns by reference the ratio between a point and the
currently chosen unit of measurement. If invoked within
the pickedUnits: method, old refers to the ratio before
the user’s choice and new refersto the new ratio.

Stops the event loop.

Updates the panel with the selected orientation.
Updates the panel when a paper size is selected.
Updates the panel when anew unit is selected.

Returns the NSPrintlnfo object that used when the panel is
run.

Reads the NSPagelayout’s values from the NSPrintInfo
object.

Writes the NSPagelayout’s values to the NSPrintInfo
object.

Classes: NSPagelLayout 1-147

NSPanel

Inherits From: NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPanel.h

Class Description

The NSPanel class defines objects that manage the panels of the OpenStep user interface. A panel isawindow that
serves an auxiliary function within an application. It generally displays controls that the user can act on to give
instructions to the application or to modify the contents of a standard window.

Panels behave differently from standard windows in only a small number of ways, but the ways are important to
the user interface:

» Panelscan assume key window—abut not main window—status. (The key window receives keyboard events.
The main window isthe primary focus of user actions; it might contain the document the user isworking on,
for example.)

e On-screen panels are normally removed from the screen list when the user begins to work in another
application, and are restored to the screen when the user returns to the panel’s application.

To aid in their auxiliary role, panels can be assigned specia behaviors:

» A panel can be precluded from becoming the key window until the user makes a sel ection (makes some view
inthepanel thefirst responder) indicating an intention to begin typing. This prevents key window statusfrom
shifting to the panel unnecessarily.

e Palettes and similar panels can be made to float above standard windows and other panels. This prevents
them from being covered and keeps them readily available to the user.

* A panel can be made to work—to receive mouse and keyboard events—even when there’ s an attention panel
on-screen. This permits actions within the panel to affect the attention panel.

1-148 Chapter 1: Application Kit OpenStep Specification—10/19/94

Determining the Panel Behavior
— (BOOL)becomesK eyOnlyl fNeeded Returns whether the receiver waits to become key window.
— (BOOL)isFloatingPanel Returns whether the receiver floats above other windows.
— (void)setBecomesK eyOnlyl fNeeded: (BOOL)flag Sets whether the receiver waits to become key window.
— (void)setFloatingPanel: (BOOL)flag Sets whether the receiver floats above other windows.

— (void)setWor kswhenM odal: (BOOL)flag Sets whether the receiver can operate even when an
attention panel is on-screen.

— (BOOL)wor kswhenM odal Returns whether the receiver can operate even when an
attention panel is on-screen. The default is NO.

OpenStep Specification—10/19/94 Classes: NSPanel 1-149

NSPasteboard

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSPasteboard.h

Class Description

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running
applications. It contains datathat the user has cut or copied and may paste, aswell as other datathat one application
wants to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all

pasteboard operations.

Named Pasteboards

Datain the pasteboard server is associated with a name that indicates how it's to be used. Each set of dataand its
associated name is, in effect, a separate pasteboard, distinct from the others. An application keeps a separate
NSPasteboard object for each named pasteboard that it uses. There are five standard pasteboards in common use;

General pasteboard

Font pasteboard

Ruler pasteboard

Find pasteboard

Drag pasteboard

The pasteboard that’s used for ordinary cut, copy, and paste operations. It holds
the contents of the last selection that’s been cut or copied.

The pasteboard that holds font and character information and supports the
Copy Font and Paste Font commands.

The pasteboard that holds information about paragraph formatsin support of
the Copy Ruler and Paste Ruler commands.

The pasteboard that holds information about the current state of the active
application’sFind panel. Thisinformation permitsusersto enter asearch string
into the Find panel, then switch to another application to conduct the search.

The pasteboard that stores data to be manipulated as the result of adrag
operation.

Each standard pasteboard is identified by a unique name (stored in global string objects):

NSGeneral Pboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object with any name other than those listed
above. The name of a private pasteboard can be passed to other applicationsto allow them to share the datait holds.

1-150 Chapter 1: Application Kit

OpenStep Specification—10/19/94

The NSPasteboard class makes sure there’'s never more than one object for each named pasteboard. If you ask for
anew object when one has already been created for the pasteboard with that name, the existing object will be
returned to you.

Data Types

Data can be placed in the pasteboard server in more than one representation. For example, an image might be
provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code (EPS). Multiple
representations give pasting applications the option of choosing which data type to use. In general, an application
taking data from the pasteboard should choose the richest representation it can handle—rich text over plain ASCII,
for example. An application putting datain the pasteboard should promise to supply it in as many data types as
possible, so that as many applications as possible can make use of it.

Datatypes are identified by string objects containing the full type name. These global variablesidentify the string
objects for the standard pasteboard types:

Type Description

NSStringPboardType NSString data

N SPostScriptPboardType Encapsulated PostScript code (EPS)
NSTIFFPboardType Tag Image File Format (TIFF)
NSRTFPboardType Rich Text Format (RTF)
NSFilenamesPboardType ASCI|I text designating one or more file names
NSTabularTextPboardType Tab-separated fields of ASCII text
NSFontPboardType Font and character information
NSRulerPboardType Paragraph formatting information
NSFileContentsPboardType A representation of afile's contents
NSColorPboardType NSColor data

NSGeneral PhoardType Describes a selection

NSDatal inkPboardType Defines alink between documents

Types other than those listed can also be used. For example, your application may keep datain a private format
that’s richer than any of the types listed above. That format can also be used as a pasteboard type.

Reading and Writing Data

Typically, datais written to the pasteboard using setData: for Type: and read using dataFor Type:. However, data
of the type NSFileContentsPboardType, representing the contents of a named file, must be written to the
NSPasteboard object using writeFileContents. and copied from the object to afile using
readFileContentsType:toFile:.

Errors

Except where errors are specifically mentioned in the method descriptions, any communications error with the
pasteboard server raises an NSPasteboardCommuni cationException exception.

OpenStep Specification—10/19/94 Classes: NSPasteboard 1-151

Creating and Releasing an NSPasteboard Object

+ (NSPasteboard *)gener al Pasteboard

Returns the general NSPasteboard.

+ (NSPasteboard *)pasteboar dWithName: (NSString *)name

+ (NSPasteboard *)pasteboar dWithUnigueName

— (void)releaseGlobally

Getting Data in Different Formats

Returns the NSPasteboard named name.
Returns a uniquely named N SPasteboard.

Releases the NSPasteboard and its resources in the
pasteboard server.

+ (NSPasteboard *)pasteboar dByFilteringData: (NSData *)data

of Type: (NSString *)type

Returns an NSPasteboard that contains data of al types
filterable from data of type type.

+ (NSPasteboard *)pasteboar dByFilteringFile: (NSString *)filename

Returns an NSPasteboard that contains data of al types
filterable from filename.

+ (NSPasteboard *)pasteboar dByFilteringTypesl nPasteboar d: (NSPasteboard *)pboard

+ (NSArray *)typesFilterableTo: (NSString *)type

Referring to a Pasteboard by Name

— (NSString *)name

Writing Data

— (int)addTypes: (NSArray *)newTypes
owner : (id)newOwner

— (int)declareTypes: (NSArray *)newTypes
owner : (id)newOwner

—(BOOL)setData: (NSData *)data
for Type: (NSString *)dataType

— (BOOL)setPropertyList:(id)propertyList
for Type: (NSString *)dataType

1-152 Chapter 1: Application Kit

Returns an NSPasteboard that contains data of al types
filterable from pboard.

Returns an array specifying all typestype can befiltered to.

Returns the NSPasteboard’s name.

Adds data types to the NSPasteboard and declares a new
owner. Returns the new change count or 0 in case of
error.

Sets the data types and owner of the NSPasteboard and
returns the new change count.

Writes data of type dataType to the pasteboard server from
data. Returns YES if the data is successfully written;
otherwise returns NO.

Writes data of type dataType to the pasteboard server from
propertyList. Returns Y ESif the datais successfully
written; otherwise returns NO.

OpenStep Specification—10/19/94

— (BOOL)setString: (NSString *)string Writes data of type dataType to the pasteboard server from
for Type: (NSString *)dataType string. Returns YES if the data is successfully written;
otherwise returns NO.

— (BOOL)writeFileContents: (NSString *)filename Writes data from filename to the pasteboard server.

Determining Types

— (NSString *)availableTypeFromArray: (NSArray *)types
Returnsfirst type in types that matches atype declared in

the receiver.
— (NSArray *)types Returns an array of the NSPasteboard’s data types.
Reading Data
— (int)changeCount Returns the NSPasteboard’s change count.

— (NSData *)dataFor Type: (NSString *)dataType Returns NSPasteboard data using the type specified by
dataType.

— (id)propertyListFor Type: (NSString *)dataType Returns a property list object using the type specified by
dataType.

— (NSString *)readFileContentsType: (NSString *)type
toFile:(NSString *)filename Reads data of type type representing afile's contents from
the NSPasteboard and writesit to filename. Returnsthe
actual name of the file that was written.

— (NSString *)stringFor Type: (NSString *)dataType Returns an NSString using the type specified by dataType.

Methods Implemented by the Owner

— (void)pasteboar d: (NSPasteboard *)sender Implemented to write promised data to sender as type.
provideDataFor Type: (NSString *)type

— (void)pasteboar dChangedOwner : (NSPasteboard *)sender
Notifies prior owner that ownership changed.

OpenStep Specification—10/19/94 Classes: NSPasteboard 1-153

NSPopUpButton

Inherits From: NSButton : NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSPopUpButton.h

Class Description

The NSPopUpButton class defines objects that implement the pop-up and pull-down lists of the OpenStep graphical
user interface. When configured to display a pop-up list, an NSPopUpButton contains a number of options and
displays asitstitle the option that was last selected. A pop-up list is often used for selecting items from asmall- to
medium-sized set of options (like the zoom factor for a document window). It's a useful alternative to a matrix of
radio buttons or an NSBrowser when screen space is at a premium; a zoom factor pop-up can easily fit next to a
scroll bar at the bottom of awindow, for example.

When configured to display a pull-down list, an NSPopUpButton is generally used for selecting commandsin a
very specific context. You can think of a pull-down list as a compact form of menu. A pull-down list’stitle isn’t
affected by the user’s actions, and a pull-down list always displays atitle that identifies the type of commands it
contains. When the commands only make sense in the context of a particular display, a pull-down list can be used
in that display to keep the related actions nearby, and to keep them out of the way when that display isn’t visible.

Initializing an NSPopUpButton

— (id)initWithFrame: (NSRect)frameRect Initializesanewly allocated NSPopUpButton, giving it the
pullsDown: (BOOL)flag frame specified by frameRect. If flag is YES, the
receiver isinitialized to operate as a pull-down list;
otherwise, it operates as a pop-up list.

Target and Action

— (SEL)action Returns the NSPopUpButton’s action method.

— (void)setAction: (SEL)aSelector Sets the NSPopUpButton’s action method to aSelector.
Adding Items

— (void)addItemWithTitle: (NSString *)title Addsan item with title asitstitle to the end of theitem list.

— (void)additemsWithTitles:(NSArray *)itemTitles Addsmultipleitemstotheend of theitemlist. Thetitlesfor
the new items are taken from the itemTitles array.

1-154 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)insertltemWithTitle: (NSString *)title
atl ndex:(unsigned int)index

Removing ltems
— (void)removeAllltems
— (void)removel temWithTitle:(NSString *)title

— (void)removel temAtl ndex: (int)index

Querying the NSPopUpButton about Its Items
— (int)indexOfltemWithTitle:(NSString *)title

— (int)indexOf Selected| tem

— (int)number Ofltems

— (NSMenuCell *)itemAtl ndex: (int)index

— (NSMatrix *)itemM atrix
— (NSString *)itemTitleAtl ndex: (int)index

— (NSArray *)itemTitles

— (NSMenuCell *)itemWithTitle:(NSString *)title

— (NSMenuCell *)lastltem

— (NSMenuCell *)selectedltem

— (NSString *)titleOf Selected| tem

Manipulating the NSPopUpButton
— (NSFont *)font
— (BOOL)pullsDown

OpenStep Specification—10/19/94

Inserts an item with title asitstitle at position index.

Removes dll itemsin the receiver’'sitem list.
Removes the item whose title matchesttitle.

Removes the item at the specified index.

Returns the index of the item whose title matches title, or
-1 if no match isfound.

Returnstheindex of theitem last selected by the user, or —1
if there's no selected item.

Returns the number of itemsin the receiver'sitem list.

Returnsthe NSMenuCell for the item at index, or nil if no
such item exists.

Returns the NSMatrix that holds the receiver’s items.

Returnsthetitle of the item at index, or the empty string if
no such item exists.

Returns an NSArray that holds the titles of the receiver’'s
items.

Returnsthe NSMenuCell for theitem whosetitleistitle, or
nil if no such item exists

Returns the NSMenuCell corresponding to the last itemin
thelist.

Returns the NSMenuCell for the selected item.

Returnsthetitle of the item last selected by the user, or the
empty string if there’s no such item.

Returns the font used to draw the items.

Returns YES if the receiver is configured as a pull-down
list, and NO if it’s configured as a pop-up list.

Classes: NSPopUpButton 1-155

— (void)selectl temAtI ndex: (int)index Selects the item at index and invokes
synchronizeTitleAndSelectedl tem.

— (void)selectltemWithTitle:(NSString *)title Selects the item whose title is title and invokes
synchronizeTitleAndSelectedltem.

— (void)setFont: (NSFont *)fontObject Sets the font used to draw the items.

— (void)setPullsDown: (BOOL)flag If flagis YES, thereceiver isconfigured asapull-down list.
If flag is NO, the receiver is configured as a pop-up list.

— (void)setTar get: (id)anObject Sets the target for action messages to anObject.

— (void)setTitle:(NSString *)aString Adds anew item (if the receiver doesn’t already have an

item titled aString), makesiit the selected item, and
invokes synchronizeTitleAndSelectedltem.

— (NSString *)stringValue Returns the title of the selected item.

— (void)synchronizeTitleAndSelectedl tem Ensures that the receiver’stitle agrees with the title of the
selected item (see indexOf Selectedl tem). If there’'sno
selected item, this method selects the first item in the
item list and sets the receiver’stitle to match. This
method is useful in subclassesthat directly select items
in the item matrix or that override setTitle:.

—(id)tar get Returns the target for action messages.

Displaying the NSPopUpButton’s Items

— (BOOL)autoenablesltems Returns whether the NSPopUpButton enables and disables
its items. (See the NSMenuA ctionResponder informal
protocol.)

— (void)setAutoenablesl tems: (BOOL)flag Sets whether the NSPopUpButton enables and disablesits
items. (See the NSMenuA ctionResponder informal
protocol.)

1-156 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSPrinter

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrinter.h

Class Description

An NSPrinter object describes a printer’'s capabilities, such as whether the printer can print in color and whether it
provides a particular font. An NSPrinter object represents either a particular make or type of printer, or an actual
printer available to the computer.

There are two ways to create an NSPrinter:

» To create an abstract object that provides information about a type of printer rather than an object that
represents an actual printer device, use the printer WithType: class method, passing a printer type (an
NSString) asthe argument. The printer Types class method provides alist of the printer types recognized
by the computer. Printer types are described in fileswritten in PostScript Printer Description (PPD) format.
The location of thesefilesis platform dependent.

« Tocreateor find an NSPrinter that correspondsto an actual printer device, use the printer WithName: class
method, passing the name of a printer. The way you find out what the available printer names are depends
on the platforms you are using.

Once you have an NSPrinter, there's only one thing you can do with it: Retrieve information regarding the type of
printer or regarding the actual printer the object represents. You can’t change the information in an NSPrinter, nor
can you use an NSPrinter to initiate or control a printing job.

When you create an NSPrinter object, the object reads the file that corresponds to the type of printer you specified
and storesthe datait finds there in named tables. Printer types are described in fileswritten in the PostScript Printer
Description (PPD) format. Any piece of information in the PPD tables can be retrieved through the methods
stringForKey:inTable: and stringListForKey:inTable:, as explained later. Commonly needed items, such as
whether aprinter is color or the size of the page on which it prints, are available through more direct methods
(methods such asisColor and pageSizeFor Paper:).

Note: To understand what the NSPrinter tables contain, you need to be acquainted with the PPD file format. This
isdescribedin PostScript Printer Description File Format Specification, version 4.0, availablefrom Adobe Systems
Incorporated. The rest of this class description assumes a familiarity with the concepts and terminology presented
inthe Adobe manual. A brief summary of the PPD format is given below; PPD terms defined in the Adobe manual

areshowninitalic.

OpenStep Specification—10/19/94 Classes: NSPrinter 1-157

PPD Format

A PPD file statement, or entry, associates a value with amain keyword:
*mainKeyword: value

The asterisk isliteral; it indicates the beginning of anew entry.

For example:

*ModelName: "MMimeo Machine"
*3dDevice: False

A main keyword can be qualified by an option keyword:
* mainKeyword optionKeyword: value
For example:

*PaperDensity Letter: "0.1"
*PaperDensity Legal: "0.2"
*PaperDensity A4: "0.3"
*PaperDensity B5: "0.4"

In addition, any number of entries may have the same main keyword with no option keyword yet give different
values:

*InkName: ProcessBlack/Process Black
*InkName: CustomColor/Custom Color
*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta
*InkName: ProcessYellow/Process Yellow

Option keywords and values can sport translation strings. A trandation string is a textual description, appropriate
for display in auser interface, of the option or value. An option or value is separated from its translation string by
adlash:

*Resolution 300dpi/300 dpi: " ... "
*InkName: ProcessBlack/Process Black

In the first example, the 300dpi option would be presented in a user interface as 300 dpi.” The second example
assigns the string “Process Black” as the trandation string for the ProcessBlack value.

NSPrinter treats entries that have an * Or der Dependency or * Ul Constraint main keyword specially. Such entries
take the following forms (the bracketed elements are optional):

*QOrderDependency: real section mainKeyword [optionKeyword]
*UlConstraint: mainKeywordl [optionKeyword1] mainKeyword2 [optionKeyword?2]

1-158 Chapter 1. Application Kit OpenStep Specification—10/19/94

There may be more than one Ul Constraint entry with the same mainKeyword1 or mainKeywordl/optionKeywordl
value. Below are some examples of *Order Dependency and * Ul Constraint entries:

*OrderDependency: 10 AnySetup *Resolution
*UIConstraint: *Option3 None *PageSize Legal
*UIConstraint: *Option3 None *PageRegion Legal

Explaining these entries is beyond the scope of this documentation; however, it's important to note their formsin
order to understand how they're represented in the NSPrinter tables.

NSPrinter Tables

NSPrinter defines five key-value tables to store PPD information. The tables are identified by the names given
below:

Name Contents

PPD General information about a printer type. Thistable containsthe valuesfor all
entriesin a PPD file except those with the * Or der Dependency and
*Ul Constraint main keywords. The values in this table don’t include the
trandlation strings.

PPDOptionTranslation Option keyword translation strings.
PPDArgumentTranslation Value trandation strings.
PPDOrderDependency *QOrder Dependency values.
PPDUI Constraints *UlConstraint values.

There are two principle methods for retrieving data from the NSPrinter tables:
» stringForKey:inTable: returns the value for the first occurrence of a given key in the given table.
e dtringListForKey:inTable: returns an array of values, one for each occurrence of the key.

For both methods, the first argument is an NSString that names a key—which part of a PPD file entry the key
corresponds to depends on the table (as explained in the following sections). The second argument namesthe table
that you want to look in. The valuesthat are returned by these methods, whether singular or in an array, are always
NSStrings, even if the value wasn't a quoted string in the PPD file.

The NSPrinter tables store data as ASCI| text, thus the two methods described above are sufficient for retrieving
any value from any table. NSPrinter provides a number of other methods, such as booleanForKey:inTable: and
intForKey:inTable:, that retrieve single values and coerce them, if possible, into particular datatypes. The
coercion doesn’t affect the data that’s stored in the table (it remainsin ASCII format).

To check the integrity of atable, usetheisKey:for Table: and statusFor Table: methods. The former returns a
boolean that indicates whether the given key isvalid for the given table; the latter returns an error code that
describes the general state of atable (in particular, whether it actually exists).

OpenStep Specification—10/19/94 Classes: NSPrinter 1-159

Retrieving Values from the PPD Table

Keysfor the PPD table are strings that name a main keyword or main keyword/option keyword pairing (formatted
as " mainKeyword/optionKeyword”). In both cases, you exclude the main keyword asterisk. The following example
creates an NSPrinter and invokes stringFor Key:inTable: to retrieve the value for an un-optioned main keyword:

/* Create an NSPrinter object for a printer type. */
NSPrinter *prType = [NSPrinter
printerWithType:@"My Mimeo Machine"]

NSString *sValue = [prType stringForKey:@"3dDevice" inTable:@"PPD"];
/* sValue is "False". */

To retrieve the value for a main keyword/option keyword pair, pass the keywords formatted as
“mai nKeyword/optionKeyword”

NSString *sValue = [prType stringForKey:@"PaperDensity/A4"
inTable:@"PPD"] ;
/* sValue is "0.3". */

stringForKey:inTable: can determine if amain keyword has options. If you pass a main keyword (only) asthe
first argument to the method, and if that keyword has optionsin the PPD file, the method returns the empty string.
If it doesn’t have options, it returns the value of the first occurrence of the main keyword:

NSString *sValue = [prType stringForKey:@"PaperDensity" inTable:@"PPD"];
/* sValue is empty string*/

NSString *sValue = [prType stringForKey:@"InkName" inTable:@"PPD"];
/* sValue is "ProcessBlack" */

To retrieve the values for all occurrences of an un-optioned main keyword, use the stringListFor Key:inTable:
method:

NSArray *sList = [prType stringListForKey:@"InkName" inTable:@"PPD"];
/* [slist objectAtIndex:0] is "ProcessBlack",

[slist objectAtIndex:1] is "CustomColor",

[slist objectAtIndex:2] is "ProcessCyan", and so on. */

In addition, stringListForKey:inTable: can be used to retrieve all the options for a main keyword (given that the
main keyword has options):

NSArray *sList = [prType stringListForKey:@"PaperDensity"
inTable:@"PPD"] ;
/* [slist objectAtIndex:0] is "Letter",
[slist objectAtIndex:1] is "Legal",
[slist objectAtIndex:2] is "A4", and so on. */

1-160 Chapter 1: Application Kit OpenStep Specification—10/19/94

Retrieving Values from the Option and Argument Translation Tables

A key to atrandlation table islike that to the PPD table: I1t’'s amain keyword or main/option keyword pair (again
excluding the asterisk). However, the values that are returned from the trandl ation tables are the trandl ation strings
for the option or argument (value) portions of the PPD file entry. For example:

NSString *sValue = [prType stringForKey:@"Resolution/300dpi"
inTable:@"PPDOptionTranslation"] ;
/* sValue is "300 dpi". */

NSArray *sList = [prType stringListForKey:@"InkName"
inTable:@"PPDArgumentTranslation"] ;
/* [slist objectAtIndex:0] is "Process Black",
[slist objectAtIndex:1] is "Custom Color",
[slist objectAtIndex:2] is "Process Cyan", and so on. *x/

Aswith the PPD table, requesting an NSArray of NSStrings for an un-optioned main keyword returns the
keyword's options (if it has any).

Retrieving Values from the Order Dependency Table
As mentioned earlier, an order dependency entry takes this form:
*OrderDependency: real section mainKeyword [optionKeyword]

These entries are stored in the PPDOrderDependency table. To retrieve avalue from this table, always use
stringListForKey:inTable:. The value passed as the key is, again, amain keyword or main keyword/option
keyword pair; however, these values correspond to the mainKeyword and optionKeyword parts of an order
dependency entry’s value. As with the other tables, the main keyword's asterisk is excluded. The method returns
an NSArray of two NSStrings that correspond to the real and section values for the entry. For example:

NSArray *sList = [prType stringListForKey:@"Resolution"
inTable:@"PPDOrderDependency"]
/* [slist objectAtIndex:0] = "10", [slist objectAtIndex:1] = "AnySetup" */

Retrieving Values from the UlConstraints Table

Retrieving avalue from the PPDUI Constraintstableis similar to retrieving aval ue from the PPDOrderDependency
table: aways use stringListForKey:inTable: and the key corresponds to el ements in the entry’s value. Given the
following form (as described earlier), the key corresponds to mainKeywordl1/optionKeyword1:

*UIConstraint: mainKeyword1 [optionKeywordl] mainKeyword2 [optionKeyword2]

The NSArray that's returned by stringListFor Key:inTable: contains the mainKeyword2 and optionKeyword?2
values (with the keywords stored as separate el ementsin the NSArray) for every *Ul Constraintsentry that hasthe
given mainKeywordl/optionKeywordl value. For example:

NSArray *sList = [prType stringListForKey:@"Option3/None"
inTable:@"PPDUIConstraints"]
/* [slist objectAtIndex:0] = "PageSize", [slist objectAtIndex:1] = "Legal",
[slist objectAtIndex:2] = "PageRegion", [slist objectAtIndex:3] = "Legal" */

OpenStep Specification—10/19/94 Classes: NSPrinter 1-161

Note that the main keywords that are returned in the NSArray don’'t have asterisks. Also, the NSArray that’s
returned always alternates main and option keywords. If a particular main keyword doesn’t have an option
associated with it, the string for the option will be empty (but the entry in the NSArray for the option will exist).

Finding an NSPrinter
+ (NSPrinter *)printer WithName: (NSString *)name Returns the NSPrinter with the given name.
+ (NSPrinter *)printer WithType: (NSString *)type Returns an NSPrinter object for the given printer type.
+ (NSArray *)printer Types Returns the recognized printer types.

Printer Attributes

— (NSString *)host Returns the name of the printer’s host computer.
— (NSString *)name Returns the printer’s name.

— (NSString *)note Returns the note associated with the printer.

— (NSString *)type Returns the name of the printer’s type.

Retrieving Specific Information
— (BOOL)acceptsBinary Returns YES if the printer accepts binary PostScript.

— (NSRect)imageRectFor Paper : (NSString *)paper Name
Returns the printing rectangle for the named paper type.
Possible values for paperName are contained in the
printer’'s PPD file. Typical values are Letter and Legal.

— (NSSize)pageSizeFor Paper : (NSString *)paper Name
Returns the size of the page for the named paper type.

—(BOOL)isColor Returns whether the printer can print color.
— (BOOL)isFontAvailable: (NSString *)fontName Returns whether the named font is available to the printer.

— (int)languagel evel Returns the PostScript Language Level recognized by the
printer.

— (BOOL)isOutputStackl nRever seOrder Returns whether the printer outputs pages in reverse page
order.

1-162 Chapter 1: Application Kit OpenStep Specification—10/19/94

Querying the NSPrinter Tables

— (BOOL)booleanFor Key: (NSString *)key Returns a boolean value associated with key in table.
inTable: (NSString *)table

— (NSDictionary *)deviceDescription Returns adictionary of keys and values describing the

device. See NSGraphics.h for possible keys.

— (float)floatFor Key: (NSString *)key Returns a floating-point value associated with key in table.
inTable:(NSString *)table

— (int)intFor Key: (NSString *)key Returns an integer value associated with key in table.
inTable: (NSString *)table

— (NSRect)rectFor Key: (NSString *)key Returns rectangle associated with key in table.
inTable:(NSString *)table

— (NSSize)sizeFor Key: (NSString *)key Returns the size associated with key in table.
inTable:(NSString *)table

— (NSString *)stringFor Key: (NSString *)key Returns a string associated with key in table.
inTable: (NSString *)table

—(NSArray *)stringListFor Key: (NSString *)key Returns an array of strings associated with key in table.
inTable:(NSString *)table

— (NSPrinterTableStatus)statusFor Table: (NSString *)table
Returns the status (NSPrinterTableOK,
NSPrinterTableNotFound, NSPrinterTableError) of the
given table.

— (BOOL)isK ey:(NSString *)key Returns whether key isakey in table.
inTable: (NSString *)table

OpenStep Specification—10/19/94 Classes: NSPrinter 1-163

NSPrintinfo

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrintinfo.h

Class Description

An NSPrintInfo object storesinformation that's used during printing. A shared NSPrintInfo object isautomatically
created for an application and isused by default for all printing jobsfor that application. You can create any number
of additional NSPrintInfo objects; however, only one can be “active’ at atime, as set through the
setSharedPrintInfo: class method. The shared NSPrintInfo object is returned through the sharedPrintlnfo class
method.

An NSPrintInfo object isused by the NSPrintOperations classto control printing. If you create special instances of
NSPrintInfo objects for a specific printing task, you must ensure that either the application’s shared NSPrintinfo
object is current, or you must instantiate an NSPrintOperations object using one of its methods that explicitly
designate an NSPrintInfo object.

Although you can set an NSPrintInfo's attributes through the methods it provides, thisis usually the task of other
objects, notably the NSPagel ayout and NSPrintPanel objects. The NSView or NSWindow that’sbeing printed may
al so supercede some NSPrintlnfo settings. In particular, aNSView or NSWindow can supply the range of pagesin
the document and can provide its own pagination mechanism through the knowsPagesFir st:last: and

rect:for Page: methods (see the documentation of these methods in the NSView class for details).

If the printed NSView or NSWindow doesn’t supply a pagination, the NSPrintInfo’s vertical and horizontal
pagination constants are used to trigger built-in pagination mechanisms;

Pagination Constant Meaning

NSAutoPagination Theimage is diced into equal-sized rectangles and placed in one column of
pages.

N SFitPagination Theimage is scaled to produce one column or one row of pages.

NSClipPeagination Theimage is clipped to produce one column or row of pages.

Vertical and horizontal pagination needn’t be the same. However, if either dimension is scaled (NSFitPagination),
the other dimension is scaled by the same amount to avoid stretching theimage. If both dimensions are scaled, the
scaling factor that producesthe smallest image is used. Note that NSPrintInfo’s scaling factor isindependent of the
scaling that's imposed by pagination and is applied after the document has been paginated.

NSPrintInfo uses points as the unit of measurement for paper size and margin width in the methods below. See the
NSFont specification for a discussion of points.

1-164 Chapter 1. Application Kit OpenStep Specification—10/19/94

Creating and Initializing an NSPrintIinfo Instance

— (id)initwWithDictionary: (NSDictionary *)aDict

Managing the Shared NSPrintinfo Object
+ (void)setShar edPrintl nfo: (NSPrintInfo *)printinfo
+ (NSPrintInfo *)sharedPrintlnfo

Managing the Printing Rectangle
+ (NSSize)sizeFor Paper Name: (NSString *)name

— (float)bottomMar gin
— (float)leftMargin
— (NSPrintingOrientation)orientation

— (NSString *)paper Name

— (NSSize)paper Size

— (float)rightMargin

— (void)setBottomM ar gin: (float)value

— (void)setL eftM ar gin: (float)value

— (void)setOrientation: (NSPrintingOrientation)mode

— (void)setPaper Name: (NSString *)name

— (void)setPaper Size: (NSSize)size
— (void)setRightM ar gin: (float)value
— (void)set TopM ar gin: (float)value

— (float)topMargin

OpenStep Specification—10/19/94

Initializes a newly allocated NSPrintInfo object by
assigning it the parameters specified in aDict. Thisis
the designated initializer for the class.

Sets the shared NSPrintInfo object to printlnfo.
Returns the shared NSPrintinfo object.

Returns the size for the specified type of paper. name
identifiesthetype of paper, such as“Letter” or “Legal”.
Paper names are implementation specific.

Returns the height of the bottom margin.
Returns the width of the left margin.
Returns whether the orientation is Portrait or Landscape.

Returns the paper type, such as*”Letter” or “Legal”. Paper
names are implementation specific.

Returns the size of the paper.

Returns the width of the right margin.

Sets the bottom margin to value.

Setsthe left margin to value.

Sets the orientation as Portrait or Landscape.

Setsthe paper type. name identifies the type of paper, such
as“Letter” or“Lega” . Paper namesareimplementation
specific.

Sets the width and height of the paper.
Sets the right margin to value.
Sets the top margin to value.

Returns the height of the top margin.

Classes: NSPrintInfo 1-165

Pagination

— (NSPrintingPaginationM ode)horizontal Pagination Returns the horizontal pagination mode.

— (void)setHorizontal Pagination: (N SPrintingPaginationM ode) mode

Sets the horizontal pagination mode.

— (void)setVertical Pagination: (N SPrintingPaginationM ode)mode

— (NSPrintingPaginationM ode)ver tical Pagination

Positioning the Image on the Page
—(BOOL)isHorizontallyCentered
— (BOOL)isVerticallyCentered
— (void)setHorizontallyCentered: (BOOL)flag
— (void)setVerticallyCentered: (BOOL)flag

Specifying the Printer
+ (NSPrinter *)defaultPrinter
+ (void)setDefaultPrinter: (NSPrinter *)printer
— (NSPrinter *)printer
— (void)setPrinter: (NSPrinter *)aPrinter

Controlling Printing

— (NSString *)jobDisposition

— (void)setJobDisposition: (NSString *)disposition

— (void)setUpPrintOperationDefaultValues

Accessing the NSPrintinfo Object’s Dictionary
— (NSMutableDictionary *)dictionary

1-166 Chapter 1: Application Kit

Sets the vertical pagination mode.

Returns the vertical pagination mode.

Returns whether the image is centered horizontally.
Returns whether the image is centered vertically.
Sets whether the image is centered horizontally.

Sets whether the image is centered vertically.

Returns the user’s default printer.

Sets the user’s default printer.

Returns the NSPrinter that’s used for printing.
Setsthe printer that's used in subsequent printing jobs.

Returns the action specified for the job: printing, faxing,
previewing, etc. See setJobDisposition:.

Sets the action specified for the job. disposition can be one
of NSPrintSpoolJob, NSPrintFaxJob,
NSPrintPreviewJob, NSPrintSaveJob,

NSPrintCancel Job.

Allows the receiver to set any attribute that hasn’t been
previously set.

Returns the NSPrintInfo object’s dictionary.

OpenStep Specification—10/19/94

NSPrintOperation

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSPrintOperation.h

Class Description

NSPrintOperation controls operations that generate Encapsulated PostScript (EPS) code or PostScript print jobs.
Generally, EPS codeis used to transfer images between applications, which happens when the user copies and
pastes graphics, uses a Service, or uses ObjectLinks. PostScript print jobs are generated when the user prints and
faxes documents. An NSPrintOperation does not generate PostScript codeitself; it just controlsthe overall process,
relying on an NSView object to generate the actual code.

NSPrintOperation relies mainly on two other objects: an NSPrintInfo object, which specifies how the code should
be generated, and an NSView object, which performs the actual code generation. You specify these two objectsin
the method you use to create the NSPrintOperation. If no NSPrintInfo is specified, NSPrintOperation uses the
shared NSPrintInfo, which contains default values. The shared NSPrintInfo workswell for applicationsthat are not
document-based. Document-based applications should create an NSPrintInfo for each document that might be
printed or copied and use that object instead.

You should create an NSPrintOperation in any method that is invoked when a user executes a Print command or a
Copy command. That method also must send NSPrintOperation arunOper ation message to start the operation. A
print: method for a document-based application might look like this:

- (void)print:sender ({
[[NSPrintOperation printOperationWithView: [self myView] printInfo: [document
docPrintInfo]] runOperation];

}

This method creates an NSPrintOperation for a print job that uses the document’s NSPrintinfo. Because thisisa
print job, a Print panel (NSPrintPanel object) is displayed to allow the user to select printing options. The
NSPrintOperation copies the NSPrintinfo, updates this copy with information from the Print panel, and uses the
specified NSView to perform the operation.

Theinformation stored in an NSPrintInfo that's retained between operations is information that's likely to remain
constant for a document, such asits page size. All information that’s likely to change between operationsis set to
adefault value in the NSPrintInfo before the operation begins. In this way, even though NSPrintOperation updates
the NSPrintInfo with information from the Print panel for print jobs, that information is reset back to the default
values for each print job. Because NSPrintOperation keeps a copy of the NSPrintInfo it uses, you could duplicate
a specific print job by storing that copy and reusing it.

OpenStep Specification—10/19/94 Classes: NSPrintOperation 1-167

Creating and Initializing an NSPrintOperation Object

+ (NSPrintOperation *)EPSOper ationWithView: (NSView *)aView
insideRect: (NSRect)rect Returns a new NSPrintOperation that controls the
toData: (NSMutableData *)data copying of EPS graphics from the area specified by rect
in aView, using the parameters in the default
NSPrintInfo. The code is written to data. Raises
NSPrintOperationExistsException if thereis already a
print operation in progress.

+ (NSPrintOperation *) EPSOperationWithView: (NSView *)aView

insideRect: (NSRect)rect Returns a new NSPrintOperation that controls the
toData: (NSMutableData *)data copying of EPS graphics from the area specified by rect
printlnfo: (NSPrintInfo *)aPrintInfo in aView, using the parameters in aPrintinfo. The code

iswritten to data. Raises
NSPrintOperationExistsException if thereis already a
print operation in progress.

+ (NSPrintOperation *)EPSOper ationWithView: (NSView *)aView

insideRect: (NSRect)rect Returns a new NSPrintOperation that controls the
toPath: (NSString *)path copying of EPS graphics from the area specified by rect
printl nfo: (NSPrintinfo *)aPrintInfo in aView, using the parameters in aPrintinfo. The code

iswritten to path. Raises
NSPrintOperationExistsException if there is aready a
print operation in progress.

+ (NSPrintOperation *)printOper ationWithView: (NSView *)aView
Returns a new NSPrintOperation that controls the printing
of aView, using the parametersin the shared
NSPrintInfo object. Raises
NSPrintOperationExistsException if thereis already a
print operation in progress.

+ (NSPrintOperation *)printOper ationWithView: (NSView *)aView
printlnfo: (NSPrintInfo *)aPrintInfo Returns a new NSPrintOperation that controls the printing
of aView, using the parametersin aPrintlnfo. Raises
N SPrintOperationExistsException if thereis already a
print operation in progress.

— (id)initEPSOper ationWithView: (NSView *)aView Initializes a newly allocated NSPrintOperation to

insideRect: (NSRect)rect control the copying of EPS graphics from the area
toData: (NSMutableData *)data specified by rect in aView, using the parametersin
printl nfo: (NSPrintinfo *)aPrintInfo aPrintinfo. The code iswritten to data.
— (id)initWithView:(NSView *)aView Initializes a newly allocated NSPrintOperation to
printlnfo:(NSPrintInfo *)aPrintInfo control the printing of aView, using the parametersin
aPrintlnfo.

1-168 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the Print Operation

+ (NSPrintOperation *)currentOper ation

Returns the NSPrintOperation that represents the current
operation or nil if thereis no such operation.

+ (void)setCurrentOperation: (NSPrintOperation *)operation

Determining the Type of Operation
— (BOOL)isEPSOperation

Controlling the User Interface

— (NSPrintPanel *)printPanel

— (BOOL)showPanels

— (void)setPrintPanel: (NSPrintPanel *)panel

— (void)setShowPanels: (BOOL)flag

Managing the DPS Context
— (NSDPSContext *)createContext

— (NSDPSContext *)context

— (void)destroyContext

Page Information
— (int)currentPage
— (NSPrintingPageOrder)pageOr der
— (void)setPageOr der : (NSPrintingPageOrder)order

OpenStep Specification—10/19/94

Sets the NSPrintOperation that represents the current
operation.

Returns YESif the receiver controls an EPS operation and
NO if the receiver controls a printing operation.

Returns the NSPrintPanel object that’s used when the
operation is run.

Returns whether the Print panel will appear when the
operation isrun.

Sets the NSPrintPanel object that's used when the
operation isrun.

Sets whether the Print panel appears when the operationis
run.

Used by the NSPrintOperation object to create the DPS
context for output generation, using the current
NSPrintInfo settings.

Returns the DPS context used for the receiver’s operation.

Used by the NSPrintOperation object to destroy the DPS
context at the end of the operation.

Returns the page number of the page being printed.
Returns the order in which pages will be printed.
Sets the order in which pages will be printed.

Classes: NSPrintOperation 1-169

Running a Print Operation

— (void)cleanUpOper ation

— (BOOL)deliver Result

— (BOOL)runOperation

Getting the NSPrintinfo Object
— (NSPrintInfo *)printl nfo
— (void)setPrintl nfo: (NSPrintInfo *)aPrintInfo

Getting the NSView Object

— (NSView *)view

1-170 Chapter 1: Application Kit

Invoked at end of an operation’s run to set the current
operation to nil.

Delivers the results generated by runOperation to the
intended destination: the print spooler, preview
application, etc. Returns Y ES upon successful delivery
and NO otherwise.

Causes the operation (copying EPS graphics or printing) to
take place. Returns Y ES upon successful completion
and NO otherwise.

Returns the receiver’'s NSPrintInfo object.

Sets the receiver’s NSPrintInfo object to aPrintlnfo.

Returns the NSView object that performs the operation
controlled by the receiving object.

OpenStep Specification—10/19/94

NSPrintPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSPrintPanel.h

Class Description

NSPrintPanel createsaPrint panel. The Print panel queriesthe user for information about a print job, such aswhich
pages to print and how many copies.

When aprint: messageis sent to an NSView or NSWindow, an NSPrintOperation object is created to control the
print operation, which includes deciding whether or not to use an NSPrintPanel. The NSPrintPanel will be used
unless the set ShowPanels:NO message is sent to the NSPrintOperation. If you're subclassing NSPrintPanel, send
the setPrintPanel message to the NSPrintOperation object to ensure that an instance of your subclassisthe unique
NSPrintPanel for that operation.

Short of subclassing NSPrintPanel, you can augment its display by adding a custom NSView through the
setAccessoryView: method. The panel is automatically resized to accommodate the NSView that you add. Note,
however, that you don’t have to create controls for special printer features. If a printer includes features in the
“OpenUl” field of its PostScript Printer Description (PPD) table, these featureswill be displayed in aseparate panel
that's brought up when the user clicks the Print panel’s Options button. For more information on a printer’'s PPD
table, see the NSPrinter class description.

Typically, you access an NSPrintPanel by invoking the printPanel method. When the class receives a printPanel
message, it triesto reuse an existing panel rather than create a new one. When a panel isreused, its attributes are
reset to the default values so that the effect is the same as receiving a new panel. Because a Print panel may be
reused, you shouldn’'t modify the instance returned by printPanel, except through the methods listed below. For
example, you can set the accessory view, but not the arrangement of the buttons within the pandl. If you must
modify the Print panel substantially, create and manage your own instance using the alloc... and init... methods
rather than the printPanel method.

An application stores printing information in an NSPrintInfo object. NSPrintPanel’s updateFromPrintl nfo reads
the NSPrintInfo object’s information into the Print panel. finalWritePrintl nfo updates the NSPrintInfo object if
the user changes the information on the Print panel. When the NSPrintOperation object is created, an NSPrintinfo
object is also selected for the operation. The NSPrintOperation creates a copy of the NSPrintInfo.
finalWritePrintl nfo actually writes to that copy.

OpenStep Specification—10/19/94 Classes: NSPrintPanel 1-171

Creating an NSPrintPanel

+ (NSPrintPanel *)printPanel

Customizing the Panel
— (void)setAccessoryView: (NSView *)aView

— (NSView *)accessoryView

Running the Panel

— (int)runM odal

— (void)pickedButton: (id)sender

Updating the Panel’'s Display
— (void)pickedAllPages: (id)sender
— (void)pickedL ayoutL ist: (id)sender

Communicating with the NSPrintinfo Object

— (void)updateFromPrintlnfo
— (void)finalWritePrintl nfo

1-172 Chapter 1: Application Kit

Returns a default NSPrintPanel object.

Adds an NSView to the panel.

Returns the accessory NSView.

Displays the Print panel and beginsits event loop. If it is
necessary to resize the panel in order to accommodate
thelist of printers, this method posts the notification
NSWindowDidResizeNotification with the receiving
object to the default notification center.

Stops the event loop.

Updates the panel when the user chooses all pages.

Updates the panel when the user chooses a new layout.

Reads NSPrintPanel’s values from the NSPrintInfo object.
Writes NSPrintPanel’s values to the NSPrintInfo object.

OpenStep Specification—10/19/94

NSResponder

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: AppKit/NSResponder.h

Class Description

NSResponder is an abstract class that forms the basis of command and event processing in the Application Kit.
Most Application Kit classes inherit from NSResponder. When an NSResponder receives an event or action
message that it can't respond to—that it doesn’t have a method for—the message is sent to its next responder. For
an NSView, the next responder is usually its superview; the content view’s next responder isthe NSWindow. Each
NSWindow, therefore, hasits own responder chain. Messages are passed up the chain until they reach an object
that can respond.

Action messages and keyboard event messages are sent first to the first responder, the object that displays the
current selection and is expected to handle most user actions within awindow. Each NSwWindow hasits own first
responder. Messages the first responder can’t handle work their way up the responder chain.

This class defines the methods that pass event and action messages a ong the responder chain.

Managing the Next Responder
— (NSResponder *)nextResponder Returns the receiver’'s next responder.

— (void)setNextResponder : (NSResponder *)aResponder
Makes aResponder the receiver’s next responder.

Determining the First Responder

— (BOOL)acceptsFirstResponder Subclasses override to accept or reject first responder
status. NSResponder’s implementation simply returns
NO.

— (BOOL)becomeFirstResponder Notifies the receiver that it's the first responder.

— (BOOL)resignFirstResponder Notifies the receiver that it's not the first responder.

OpenStep Specification—10/19/94 Classes: NSResponder 1-173

Aiding Event Processing

— (BOOL)performK eyEquivalent: (NSEvent *)theEvent

— (BOOL)tryToPerform:(SEL)anAction
with: (id)anObject

Forwarding Event Messages

— (void)flagsChanged: (NSEvent *)theEvent

— (void)helpRequested: (NSEvent *)theEvent

— (void)keyDown: (NSEvent *)theEvent

— (void)keyUp: (NSEvent *)theEvent

— (voidymouseDown: (NSEvent *)theEvent

— (void)mouseDragged: (NSEvent *)theEvent

— (void)mouseEnter ed: (NSEvent *)theEvent

— (void)mouseExited: (NSEvent *)theEvent

1-174 Chapter 1: Application Kit

Subclasses override to respond to keyboard input.
NSResponder’s implementation simply returns NO to
indicate theEvent isn’t handled.

Aidsin dispatching action messages. Returns YES if an
responder in the responder chain can perform the
anAction method, which takes the single argument
anObject.

Subclasses override to handle flags-changed events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Causes the Help pandl to display the help attached to the
receiver. If there’s no attached help, passes the message
to the receiver’s next responder.

Subclasses override to handle key-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder. If the first responder
changes, this method posts the notification
NSTextDidEndEditingNotification with the current
object and, in the notification’s dictionary, the key
NSTextMovement to the default notification center.

Subclasses override to handle key-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-dragged events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-entered events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-exited events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

OpenStep Specification—10/19/94

— (void)mouseM oved: (NSEvent *)theEvent Subclasses override to handle mouse-moved events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void)mouseUp: (NSEvent *)theEvent Subclasses override to handle mouse-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void)noResponder For : (SEL)eventSel ector Responds to an event message that has reached the end of
the responder chain without finding an object that can
respond. When the event is a key down, generates a

beep.

— (void)rightM ouseDown: (NSEvent *)theEvent Subclasses override to handle right mouse-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void)rightM ouseDr agged: (NSEvent *)theEvent ~ Subclasses override to handl e right mouse-dragged events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void)rightM ouseUp: (NSEvent *)theEvent Subclasses override to handle right mouse-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Services Menu Support

— (id)validRequestor For SendType: (NSString *)typeSent
returnType: (NSString *)typeRetur ned Subclasses override to determine which Services menu
itemsareenabled at agiven time. Returning self enables
servicesthat can receive typeSent pasteboard types and
can return typeRetur ned pasteboard types. Returning nil
disables them. NSResponder’s implementation passes
the message to the receiver’s next responder.

OpenStep Specification—10/19/94 Classes: NSResponder 1-175

NSSavePanel

Inherits From:

Conforms To:

Declared In:

Class Description

NSPanel : NSWindow : NSResponder : NSObject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSSavePanel.h

NSSavePanel creates a Save panel. The Save panel provides asimple way for a user to specify afile to use when
saving a document or other data. It can restrict the user to files of a certain type, as specified by afile name

extension.

When the user decides on afile name, the message panel:isValidFilename: is sent to the NSSavePanel’s del egate
(if it respondsto that message). The delegate can then determine whether that file name can be used; it returns YES
if thefilenameisvalid, or NO if the Save panel should stay up and wait for the user to type in adifferent file name.

Typically, you access an NSSavePanel by invoking the savePanel method. When the class receives a savePanel
message, it tries to reuse an existing panel rather than create a new one. When a panel is reused, its attributes are
reset to the default values so that the effect is the same as receiving a new panel. Because a Save panel may be
reused, you shouldn't modify the instance returned by savePanel, except through the methods listed below. For
example, you can set the panel’stitle and required file type, but not the arrangement of the buttons within the panel.
If you must modify the Save panel substantially, create and manage your own instance using the alloc... and init...

methods rather than the savePanel method.

Creating an NSSavePanel

+(NSSavePanel *)savePanel Returns an NSSavePanel object, creating it if necessary.

Customizing the NSSavePanel

— (void)setAccessoryView: (NSView *)aView Adds an application-customized view to the save panel.
— (NSView *)accessoryView Returns the application-customized view object.
— (void)set Title: (NSString *)title Sets the title of the NSSavePanel to title.

— (NSString *)title

Returns the title of the NSSavePand!.

— (void)setPrompt: (NSString *)prompt Setsthetitle of the form field for the path to prompt.

— (NSString *)prompt Returnsthe title of the form field for the path.

1-176 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting Directory and File Type
— (NSString *)requiredFileType

— (void)setDirectory: (NSString *)path
— (void)setRequiredFileType: (NSString *)type

Getsthe required file type (if any).
Sets the current directory of the NSSavePanel.

Sets the required file type (if any). An empty string
indicates that the user can save to any ASCII file.

— (void)set Tr eatsFilePackagesAsDirectories: (BOOL)flag

— (BOOL)treatsFilePackagesAsDirectories

Running the NSSavePanel

— (int)runM odal For Dir ectory: (NSString *)path

file:(NSString *)filename
—(int)runM odal

Reading Save Information
— (NSString *)directory
— (NSString *)filename

Target and Action Methods
— (void)ok: (id)sender

— (void)cancel: (id)sender

Responding to User Input

— (void)select Text: (id)sender

Setting the Delegate
— (void)setDelegate: (id)anObject

OpenStep Specification—10/19/94

Setswhether the NSSavePanel object treatsfile packagesas
directories by showing their contentsin the browser.

Returns YES if the NSSavePanel treats file packages as
directories, thereby allowing users to browse the
contents of file packages.

Displays the NSSavePanel and beginsits event loop,
showing path in the browser and selecting filename.

Displays the NSSavePanel and begins its event loop.

Returns the directory that the chosen file resides in.

Returns the absolute path name of the file to be saved.

Method invoked by the OK button.
Method invoked by the Cancel button.

Invoked when users press Tab, Shift-Tab, or an arrow key.

Makes anObject the NSSavePanel’s delegate.

Classes: NSSavePanel 1-177

Methods Implemented by the Delegate

— (NSComparisonResult)pandl: (id)sender
compar eFilename: (NSString *)filenamel
with:(NSString *)filename2
caseSensitive: (BOOL)caseSensitive

— (BOOL)pandl: (id)sender
shouldShowFilename: (NSString *)filename

— (BOOL)pand:(id)sender
isvalidFilename: (NSString*)filename

1-178 Chapter 1. Application Kit

Returns NSOrderedDescending if filenamel precedes
filename2, NSOrderedA scending in the opposite case,
NSOrderedSame if the two are equivalent.

Returns YES if filename should be displayed in the

browser.

Returns YES if filename is acceptabl e to the del egate.

OpenStep Specification—10/19/94

NSScreen

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSScreen.h

Class Description

An NSScreen object describes the attributes of a computer’s monitor, or screen. An application may use an
NSScreen object to retrieve information about a screen and use thisinformation to decide what to display upon that
screen. For example, an application may use the deepest Screen method to find out which of the available screens
can best represent color and then may choose to display all of its windows on that screen.

The two main attributes of a screen areits depth and its dimensions. The depth method describes the screen depth
(such astwo-hit, eight-bit, or twelve-hit) and tellsyou if the screen can display color. The frame method gives the
screen’s dimensions and location as an NSRect.

The device description dictionary contains more complete information about the screen. Use NSScreen’s
deviceDescription method to access the dictionary, and use these keys to retrieve information about a screen:

Dictionary Key Returns

NSDeviceResolution An NSValue describing the screen’s resolution in dots per inch (dpi).
NSDeviceColorSpaceName The screen’s color space name. See NSGraphics.h for alist of possible values.
NSDeviceBitsPerSample The bit depth of screen images (2-bit, 8-bit, etc.).

NSDevicel sScreen YES, indicating the deviceis a screen.

NSDeviceSize An NSValue describing the screen’s sizein points.

The device description dictionary containsinformation about not only screens, but all other system devices such as
printers and windows. There are other keysinto the dictionary that you would use to obtain information about these
other devices. For acomplete list of device dictionary keys, see NSGraphics.h.

Creating NSScreen Instances

+ (NSScreen *)mainScreen Returns an NSScreen object representing the main screen.
The main screen is the screen with the key window.

+ (NSScreen *)deepestScreen Returns an NSScreen object representing the screen that
can best represent color. This method aways returns an
object, even if thereis only one screen and it isnot a
color screen.

OpenStep Specification—10/19/94 Classes: NSScreen 1-179

+ (NSArray *)screens Returns an array of NSScreen objects representing all of
the screens available on the system. Raises
NSWindowServerCommunicationException if the
screensinformation can’t be obtained from the window

system.
Reading Screen Information

— (NSWindowDepth)depth Returns the screen’s depth, including whether the screen
can display color.

— (NSRect)frame Returns the dimensions and location of the screen in an
NSRect.

— (NSDictionary *)deviceDescription Returns the device dictionary as described in the class
description.

1-180 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSScroller

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSScroller.h

Class Description

TheNSScroller classdefinesacontrol that’s used by an NSScrollView object to position adocument that’stoo large
to be displayed in its entirety within an NSView. An NSScroller istypically represented on the screen by a bar, a
knob, and two scroll buttons, although it may contain only some of these. The knob indicates both the position
within the document and the amount displayed rel ative to the size of the document. The bar istherectangular region
that the knob dlides within. The scroll buttons allow the user to scroll in small increments by clicking, or in large
increments by Alternate-clicking. In discussions of the NSScroller class, asmall increment isreferredtoasa*“line
increment” (even if the NSScroller is oriented horizontally), and alarge increment is referred to as a“ page
increment,” although a page increment actually advances the document by one windowful. When you create an
NSScroller, you can specify either avertical or ahorizontal orientation.

As an NSControl, an NSScroller handles mouse events and sends action messages to its target (usualy its parent
NSScrollView) to implement user-controlled scrolling. The NSScroller must also respond to messages from an
NSScrollView to represent changes in document positioning.

NSScroller isapublic class primarily for programmers who decide not to use an NSScrollView but want to present
aconsistent user interface. Its useis not encouraged except in cases where the porting of an existing application is
made more straightforward. In these situations, you initialize a newly created NSScroller by calling
initWithFrame:. Then, you use setTarget: (NSControl) to set the object that will receive messages from the
NSScroller, and you use setAction: (NSControl) to specify the message that will be sent to the target by the
NSScroller. When your target receives a message from the NSScroller, it will probably need to query the
NSScroller using the hitPart and floatValue (NSControl) methods to determine what action to take.

The NSScroller class has several constants referring to the parts of an NSScroller. A scroll button with an up arrow
(or left arrow, if the NSScroller is oriented horizontally) is known as a“ decrement line” button if it receivesa
normal click, and as a“ decrement page” button if it receives an Alternate-click. Similarly, a scroll button with a
down or right arrow functions as both an “increment ling” button and an “increment page” button. The constants
defining the parts of an NSScroller are as follows:

OpenStep Specification—10/19/94 Classes: NSScroller 1-181

Constant Refers To

NSScrollerNoPart No part of the NSScroller

NSScrollerKnob The knob

NSScrollerDecrementPage The button that decrements a windowful (up or left arrow)
NSScrollerlncrementPage The button that increments a windowful (down or right arrow)
NSScrollerDecrementLine The button that decrements a windowful (up or left arrow)
NSScrollerlncrementLine The button that increments awindowful (down or right arrow)
NSScrollerK nobSlot The bar

Thefollowing constants are used in the setArrowsPosition: method to set the position of the scroll buttons within
the scroller:

Constant Meaning
NSScrollerArrowsMaxEnd Scroll buttons are placed at the bottom or right end of the scroller.

NSScrollerArrowsMinEnd Scroll buttons are placed at the top or left part of the scroller.
NSScrollerArrowsNone The scroller doesn’t have scroll buttons.

An NSScroller can be made too small for al its partsto be displayed. The usableParts method returns one of the
following constants to indicate whether such a condition is present:

Constant Meaning

NSNoScrollerParts Scroller has no usable parts, only the bar.
NSOnlyScrollerArrows Scroller has only scroll buttons.
NSAllScrollerParts Scroller has al parts.

Thefollowing constants are used as values for thefirst argument of the drawArrow:highlight: method, toindicate
which scroll button is to be drawn:

Constant Meaning

NSScrollerlncrementArrow The scroll button that scrolls forward.
NSScrollerDecrementArroww The scroll button that scrolls backward.

Laying out the NSScroller

+ (float)scroller Width Returns the width of the scoller, a constant value.
— (NSScroll ArrowPosition)ar rowsPosition Returns the position of scroll arrows in the NSScroller.
— (void)check SpaceFor Parts Checks for room for knob and scroll buttons.

— (NSRect)rectFor Part: (NSScrollerPart)partCode Gets the rectangle that encloses partCode.

— (void)setArrowsPosition: (NSScroll ArrowPosition)where
Sets position of scroll arrowsin the NSScroller.

— (NSUsableScrollerParts)usableParts Indicateswhich parts of the scroller can bedisplayed, given
the NSScroller’s current size.

1-182 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the NSScroller’s Values

— (float)knobProportion Returns the ratio of the knob's length to the NSScroller’s
length.
— (void)setFloatValue: (float)aFl oat Sets the NSScroller’s value, repositioning the
knobProportion:(float)ratio knob according to aFloat and resizing it according to

ratio. Both arguments are clipped to the range from 0.0
to 1.0, inclusive.

Displaying
— (void)drawArrow: (NSScrollerArrow)whichButton
highlight:(BOOL)flag Draws highlighted and unhighlighted arrows.
— (void)drawK nob Draws the knob.
— (void)drawParts Caches bitmaps for knob and scroll arrows.
— (void)highlight: (BOOL)flag Highlights scroll button that’s under mouse.

Handling Events

— (NSScrollerPart)hitPart Returns the part of the NSScroller object that received
mouse-down.

— (NSScrollerPart)testPart: (N SPoint)thePoint Returns the part of the NSScroller that's under thePoint.

— (void)trackK nob: (NSEvent *)theEvent Invoked in response to mouse-down events on the knob.

— (void)track ScrollButtons: (NSEvent *)theEvent Invoked in response to mouse-down events on buttons.

OpenStep Specification—10/19/94 Classes: NSScroller 1-183

NSScrollView

Inherits From:

NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)
Declared In: AppKit/NSScrollView.h

Class Description

An NSScrollView object letsthe user interact with adocument that’stoo large to be shown in its entirety within an
NSView and must therefore be scrolled. Theresponsibility of an NSScrollView isto coordinate scrolling behavior
between NSScroller objects and a NSClipView object. Thus, the user may drag the knob of an NSScroller and the
NSScrollView will send a message to its NSClipView to ensure that the viewed portion of the document reflects
the position of the knob. Similarly, the application can change the viewed position within a document and the
NSScrollView will send a message to the NSScrollers advising them of this change.

The NSScrollView has at least one subview (an NSClipView object), whichis called the content view. The content
view in turn has a subview called the document view, which isthe view to be scrolled. When an NSScrollView is
created, it has neither avertical nor a horizontal scroller. If NSScrollers are required, the application must send
setHasHorizontal Scroller:YES and setHasVertical Scroller: Y ES messages to the NSScrollView; the content
view isresized to fill the area of the NSScrollView not occupied by the NSScrollers.

When the application modifies the scroll position within the document, it should send areflectScrolledClipView:
message to the NSScrollView, which will then query the content view and set the NSScroller(s) accordingly. The
reflectScrolledClipView: message may also cause the NSScrollView to enable or disable the NSScrollers as
required.

Determining Component Sizes

— (NSSize)contentSize Gets the content view’s size.

— (NSRect)documentVisibleRect Getsthe visible portion of the document view.

1-184 Chapter 1: Application Kit OpenStep Specification—10/19/94

Laying Out the NSScrollView

+ (NSSize)contentSizeFor FrameSize: (NSSize)size
hasHorizontal Scroller:(BOOL)horizFlag
hasVerticalScroller:(BOOL)vertFlag
border Type: (NSBorderType)aType

+ (NSSize)frameSizeFor ContentSize: (NSSize)size
hasHorizontalScroller:(BOOL)horizFlag
hasVerticalScroller: (BOOL)vertFlag
border Type: (NSBorderType)aType

— (void)setHasHorizontal Scroller: (BOOL)flag
— (BOOL)hasHorizontal Scroller
— (void)setHasVerticalScroller:(BOOL)flag

—(BOOL)hasVerticalScroller

— (voidytile

— (void)toggleRuler : (id)sender

— (BOOL)isRulerVisible

Managing Component Views
— (void)setDocumentView: (NSView *)aView

— (idydocumentView

Gets the content view size for the given NSScrollView
frame size.

Gets the NSScroll View frame size for the given content
view size.

Instructs the NSScrollView whether to create and use a
horizontal scroller.

Returns YES if the NSScrollView object has a horizontal
scroller.

Instructs the NSScrollView whether to create and use a
vertical scroller.

Returns YES if the NSScrollView object has a vertical
scroller.

Retiles the scrollers and content view.

Makes the ruler visible or invisible, whichever isthe
opposite of its current state.

Returns whether the ruler is visible in the NSScrollView.

Makes aView the NSScrollView’s document view.

Returns the current document view.

— (void)setHorizontal Scroller: (NSScroller *)anObject

— (NSScroller *)horizontal Scroller
— (void)setVerticalScroller:(NSScroller *)anObject
— (NSScroller *)vertical Scroller

Sets the horizontal NSScroller object.
Returns the horizontal NSScroller object.
Sets the vertical NSScroller object.

Returns the vertical NSScroller object.

— (void)reflectScrolledClipView: (NSClipView *)cView

OpenStep Specification—10/19/94

Moves the scrollers to reflect change in the coordinates of
the clip view.

Classes: NSScrollView 1-185

Modifying Graphic Attributes
— (void)setBor der Type: (NSBorderType)aType
— (NSBorderType)bor der Type
— (void)setBackgroundColor:(NSColor *)color
— (NSColor *)backgroundColor

Setting Scrolling Behavior

— (float)lineScrall

— (float)pageScroall

— (void)setScrollsDynamically: (BOOL)flag
— (BOOL)scrollsDynamically

— (void)setL ineScroll: (float)value

— (void)setPageScroll: (float)value

Managing the Cursor

Sets the border type of the NSScrolView.
Returns the border type.
Sets the NSScrollView’s background color.

Returns the NSScrollView’s background color.

Returns the amount scrolled when scrolling aline. (The
return valueisexpressed in units of the NSScrollView’s
coordinate system.)

Returns the amount scrolled when scrolling a page. (The
return valueisexpressed in units of the NSScrollView's
coordinate system.)

Sets how the document view is displayed during scrolling.
Returns whether the NSScrollView scrolls dynamically.
Sets the amount to scroll when scrolling aline.

Sets the amount of overlap for a page scroll.

— (void)setDocumentCur sor : (NSCursor *)anObject Sets the cursor for the document view.

1-186 Chapter 1: Application Kit

OpenStep Specification—10/19/94

NSSelection

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSSelection.h

Class Description

The NSSelection class defines an object that describes a selection within adocument. An NSSelection, or simply,
selection, isan immutable description; it may be held by the system or other documents, and it cannot change over
time. Selections are typically used by NSDatal ink objects to represent the source and destination of alink.

Because a selection description can’t be changed once it's been exported, it's a good idea to construct general
descriptions that can survive changes to a document and don’t require selection-specific information to be stored
in the document. This description may be simple or complex, depending upon the application. For example, a
painting application might describe a selection in an image as a simple rectangle. This description doesn’t require
that any information be stored in the image’s file, and the description can be expected to remain valid through the
life of the image. An object-based drawing application might describe a selection as alist of object identifiers
(though not ids), where an object identifier is unique throughout the life of the document. Based on thislist, a
selection could be meaningfully reconstructed, even if new objects are added to the document or selected objects
are deleted. Such a scheme doesn’t require that any sel ection-specific information be stored in the document’sfile,
with the benefit that links can be made to read-only documents.

Maintaining a character-range selection in atext document is more problematic. A possible solutionisto insert
selection-begin and selection-end markers that define a specific selection into the text stream. A selection
description would then refer to a specific selection marker. This solution requires that selection state information
be stored and maintained within the document. Furthermore, this information generally shouldn’t be purged from
the document, because the document can’t know how many references to the selection exist. (References to the
selection could be stored with documents on removable media, like floppy disks.) This selection-state information
should be maintained aslong asit refersto any meaningful data. For thisreason, it’'s desirable to describe selection
inamanner that doesn’t require that selection-state information be maintained in the document whenever possible.

Three well-known selection descriptions can apply to any document: the empty selection, the entire document, and
the abstract concept of the current selection. NSSelection objects for these selections are returned by the
emptySelection, allSelection, and cur rentSelection class methods.

Since an NSSelection may be used in adocument that is read by machines with different architectures, care should
betaken to write machine-independent descriptions. For example, using abinary structure asasel ection description
will fail on amachine where an identically defined structure has adifferent size or is kept in memory with different
byte ordering. Exporting (and then parsing) ASCI| descriptionsis often agood solution. If binary descriptions must
be used, it's prudent to preface the description with a token specifying the description’s byte ordering.

OpenStep Specification—10/19/94 Classes: NSSelection 1-187

It may also be prudent to version-stamp selection descriptions, so that old selections can be accurately read by
updated versions of an application.

Returning Special Selection Shared Instances

+ (NSSelection *)all Selection Returns the shared instance of the well-known selection
representing the entire document.

+ (NSSelection *)currentSelection Returns the shared instance of the well-known selection
representing the abstract concept of the current
selection. The current selection never describes a
specific selection; it describes a selection that may
change frequently.

+ (NSSelection *)emptySelection Returns the shared instance of the well-known selection
representing no data.

Creating and Initializing a Selection

+ (NSSelection *)selectionWithDescriptionData: (NSData *)data
Createsand returns an NSSel ection object that records data
as the description of the selection.

— (id)initWithDescriptionData: (NSData *)newData Initializes a newly allocated NSSel ection object that
records data as the description of the selection. Returns
the initialized object.

— (id)initWithPasteboar d: (NSPasteboard *) pasteboard
Initializes a newly allocated NSSel ection object that takes
its description of the selection from pasteboard.
Returnsthe initialized object.

Describing a Selection

— (NSDhata *)descriptionData Returns the data that describes the selection as set by
selectionWithDescriptionData: or
initWithDescriptionData:.

— (BOOL)isWellK nownSelection Returns YES if the receiver is one of the well-known
selection types (those representing the entire document,
current selection, or empty selection) and NO
otherwise.

1-188 Chapter 1: Application Kit OpenStep Specification—10/19/94

Writing a Selection to the Pasteboard

— (void)writeToPasteboard: (NSPasteboard *)pasteboard
Writes the selection data to the pasteboard pasteboard. A
copy of the selection can then be retrieved by
initializing a new NSSelection from the pasteboard
using initWithPasteboard:.

OpenStep Specification—10/19/94 Classes: NSSelection 1-189

NSSlider

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSSlider.h

Class Description

NSSlider is atype of NSControl with a sliding knob that can be moved to represent a value between a minimum

and amaximum setting. A dider may be either horizontal or vertical, but its minimum valueis always at the left or
bottom end of the bar, and the maximum at the right or top. By default, an NSSlider is a continuous NSControl: It
sends its action message to its target continuously while the user drags its knob. To configure an NSSlider to send
its action only when the mouse is released, send setContinuous: (an NSControl method) with an argument of NO.

An NSSlider can be configured to display an image, atitle, or both, in the area behind its knob. An NSSlider'stitle
can bedrawn in any gray level or color, and in any font available. An NSSlider's value can be set programmatically
with any of the standard NSControl value-setting methods, such as setFloatValue:.

For more information, see the method descriptions in the NSSliderCell class specification.

Setting the Cell Class

+ (Class)cdllClass Returnsthe classlast set in asetCellClass: message, or the
NSSliderCell classif setCellClass: has never been
called.

+ (void)setCellClass: (Class)classld Sets the class of NSCell used in the NSSlider.

Modifying an NSSlider’'s Appearance

— (NSImage *)image Returns the image within the NSSlider.

—(int)isVertical Returns 1 if the NSSlider is vertical, O if horizontal, -1 if
unknown.

— (float)knobThickness Returns the knob’s thickness as a float value (width if

horizontal dider, height if vertical slider).
— (void)setl mage: (N Slmage *)backgroundlmage Sets the image within the NSSlider to backgroundimage.

1-190 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setK nobThickness: (float)aFloat

— (void)setTitle: (NSString *)aString
— (void)setTitleCell: (NSCell *)aCell

—(void)setTitleColor:(NSColor *)aColor
— (void)set TitleFont: (NSFont *)fontObject

— (NSString *)title
— (id)titleCell

— (NSColor *)titleColor
— (NSFont *)titleFont

Setting and Getting V alue Limits
— (doubleymaxValue
— (doubleyminValue
— (void)setM axValue: (double)aDouble
— (void)setM inValue: (double)aDouble

Handling Events

— (BOOL)acceptsFirstM ouse: (NSEvent *)theEvent

OpenStep Specification—10/19/94

Sets the knob's thickness (its width if the dlider is
horizontal, height if vertical) to aFloat, expressed in
units of the NSSlider’s coordinate system.

Sets the title within the NSSlider to a copy of aString.

Setsthe NSCell (or subclass thereof) object used to draw
the title within the NSSlider. The cell object should
ideally be an instance of NSTextFieldCell or one of its
subclasses.

Sets the color of text in the title to aColor.

Sets the NSFont object used for the title within the
NSSlider.

Returns the title within the NSSlider.

Returns the NSCell (or subclass thereof) object used to
draw the title within the NSSlider.

Returns the color of text in the title.

Returns the NSFont object used in drawing the title within
the NSSlider.

Returns theNSSlider’'s maximum value.
Returns the NSSlider’'s minimum value.
Sets the NSSlider’'s maximum value to aDouble.

Sets the NSSlider’'s minimum value to aDouble.

Returns YES by default, since NSSliders always accept a
mouse-down event that activates a window, whether or
not the NSSlider is enabled. Override thisif you want
different behavior.

Classes: NSSlider 1-191

NSSliderCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)

NSObject (NSObject)
Declared In: AppKit/NSSliderCell.h

Class Description

NSSliderCell is atype of NSCell used to assist the NSSlider class, and to build matrices of dliders. The
NSSliderCell encompassesall the visible portions of the NSSlider—the knaob, the areaalong which the knob slides,
and the optional title within this area. See the NSSlider class specification for an overview of how NSSliderCells

work.

Determining Component Sizes

— (NSSize)cellSizeFor Bounds: (NSRect)aRect

— (NSRect)knobRectFlipped: (BOOL))flipped

Setting Value Limits
— (doubleymaxValue
— (doubleyminValue
— (void)setM axValue: (double)aDouble
— (void)setM inValue: (double)aDouble

Modifying Graphic Attributes
—(int)isVertical

— (float)knobThickness

— (void)setK nob T hickness: (float)aFloat

1-192 Chapter 1: Application Kit

Returns the minimum width and height needed to draw the
NSSliderCell in aRect. If aRect too small to fit the knob
and bezel, the width and height of theSze are set to 0.0.

Gets the rectangle the knob will be drawn in. flipped
indicates whether the NSSliderCell's view has aflipped
coordinate system.

Returns the NSSliderCell’s maximum value.
Returns the NSSliderCell’s minimum value.
Sets the maximum val ue of the NSSliderCell to aDouble.

Sets the NSSliderCell’s minimum value to aDouble.

Returns 1 if the NSSliderCell isvertical, O if horizontal, -1
if unknown.

Returns the knob’s thickness as a float value.

Sets the knob’s thickness to aFloat (width if a horizontal
slider, height if vertical).

OpenStep Specification—10/19/94

— (void)setTitle: (NSString *)aString
— (void)setTitleCell: (NSCell *)aCell

— (void)setTitleColor:(NSColor *)aColor
— (void)setTitleFont: (NSFont *)fontObject

— (NSString *)title
— (id)titleCell

— (NSFont *)titleFont
— (NSColor *)titleColor
Displaying the NSSliderCell
— (void)drawBar I nside: (NSRect)aRect
flipped: (BOOL)flipped
— (void)drawK nob

— (void)drawK nob: (NSRect)knobRect

Modifying Behavior

— (double)altl ncrementValue

— (void)setAltl ncrementValue: (double)incValue

OpenStep Specification—10/19/94

Sets the title within the NSSliderCell to acopy of aString.

Setsthe NSCell (or subclass thereof) object used to draw
thetitlewithin the NSSliderCell. The cell object should
ideally be an instance of NSTextFieldCell or one of its
subclasses.

Sets the color of text in thetitle to aColor.

Sets the NSFont object used to draw the title within the
NSSliderCell.

Returns the title within the NSSliderCell.

Returns the NSCell (or subclass thereof) object used to
draw the title within the NSSliderCell.

Returns the NSFont object used in drawing the title within
the NSSliderCell.

Returns the color of text in the title.

Draws the NSSliderCell’s background bar (but not the
bezel around it or the knob) in aRect. flipped indicates
whether the NSView’s coordinate system is flipped.

Draws the NSSliderCell’s knob after calculating the
drawing rectangle.

Draws the NSSliderCell’s knob in knobRect.

Returnstheincrement by which the NSSliderCell modifies
its value when its knob is Alternate-dragged one pixel.

Sets the amount by which the NSSliderCell modifiesits
value when the knaob is dragged one pixel with the
Alternate key held down.

Classes: NSSliderCell 1-193

Tracking the Mouse

+ (BOOL)prefer sTrackingUntilM ouseUp Returns YES to allow NSSliderCell objectsto track even
when the mouse leaves their bounds. Override this
method to return NO if you want the NSSliderCell to
stop tracking once the mouse leaves its bounds.

— (NSRect)track Rect Returns the rectangle used in tracking the mouse (only
valid while tracking).

1-194 Chapter 1. Application Kit OpenStep Specification—10/19/94

NSSpellChecker

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSSpellChecker.h

Class Description

The NSSpell Checker class gives any application an interface to the OpenStep spell-checking service. To handleall
its spell checking, an application needs only oneinstance of NSSpell Checker. It provides apanel in which the user
can specify decisions about words that are suspect. To check the spelling of a piece of text, the application:

e Includesin its user interface a menu item (or a button or command) by which the user will request spell
checking.

» Makesthe text available by way of an NSString object.

» Creates an instance of the NSSpell Checker class and sendsit a check SpellingOfString: startingAt:
message.

For example, you might use the following statement to create an NSSpell Checker:
range = [[NSSpellChecker sharedSpellChecker] checkSpellingOfString:aString startingAt:0];

The check SpellingOfString: startingAt: method checksthe spelling of the wordsin the specified string beginning
at the specified offset (this example uses 0 to start at the beginning of the string) until it finds aword that is
misspelled. Then it returns an NSRange to indicate the location of the misspelled word.

In agraphical application, whenever amisspelled word isfound, you'll probably want to highlight the word in the
document, using the NSRangethat check SpellingOfString: star tingAt: returned to determinethetext to highlight.
Then you should show the misspelled word in the Spelling panel’s misspelled-word field by calling
updateSpellingPanelWithMisspelledWord:. If checkSpellingOfString: startingAt: does not find a misspelled
word, you should call updateSpellingPanelWithMisspelledWor d: with the empty string. This causes the system
to beep, letting the user know that the spell check is complete and no misspelled words were found. None of these
stepsisrequired, but if you do one, you should do them all.

The object that provides the string being checked should adopt the following protocols:

NSChangeSpelling A messagein thisprotocol (changeSpelling:) issent down the responder chain
when the user presses the Correct button.

NSlIgnoreMisspelledWords When the obj ect being checked respondsto this protocol, the spell server keeps
alist of words that are acceptable in the document and enabl es the Ignore
button in the Spelling panel.

OpenStep Specification—10/19/94 Classes: NSSpellChecker 1-195

The application may choose to split a document’s text into segments and check them separately. Thiswill be
necessary when the text has segmentsin different languages. Spell checking isinvoked for one language at atime,
so adocument that contains portions in three languages will require at least three checks.

Dictionaries and Word Lists
The process of checking spelling makes use of three references:

« A dictionary registered with the system’s spell-checking service. When the Spelling panel first appears, by
default it shows the dictionary for the user’s preferred language. The user may select a different dictionary
from the list in the Spelling panel.

» Theuser's“learn” list of correctly-spelled wordsin the current language. The NSSpellChecker updates the
list when the user presses the Learn or Forget buttons in the Spelling panel.

e Thedocument’slist of words to be ignored while checking it (if the first responder conformsto the
NSlIgnoreMisspelledWords protocol). The NSSpellChecker updates its copy of this list when the user
presses the Ignore button in the Spelling panel.

A word is considered to be misspelled if none of these three acceptsiit.

Matching a List of Ignored Words with the Document It Belongs To

The NSString being checked isn’t the same as the document. In the course of processing a document, an
application might run several checks based on different parts or different versions of the text. But they’d all belong
to the same document. The NSSpell Checker keeps aseparate “ignored words” list for each document that it checks.
To help match “ignored words” lists to documents, you should call uniqueSpellDocumentTag once for each
document. This method returns a unique arbitrary integer that will serve to distinguish one document from the
others being checked and to match each “ignored words” list to adocument. When searching for misspelled words,
pass the tag as the fourth argument of

check SpellingOfString: startingAt:language: wr ap:inSpelIDocumentWithTag: wordCount:. (The
convenience method check SpellingOfString: startingAt: takes no tag. This method is suitable when the first
responder does not conform to the NSIgnoreMi sspelledWords protocol..)

When the application saves a document, it may choose to retrieve the “ignored words” list and save it along with
the document. To get back the right list, it must send the NSSpell Checker an

ignoredWor dsl nSpellDocumentWithTag: message. When the application has closed a document, it should
notify the NSSpell Checker that the document’s “ignored words” list can now be discarded, by sending it a
closeSpellDocumentWithTag: message. When the application reopens the document, it should restore the
“ignored words’ list with the message setl gnoredWor ds:inSpellDocumentWithTag:.

Making a Checker available

+ (NSSpell Checker *)sharedSpell Checker Returns the NSSpell Checker (one per application).
+ (BOOL)sharedSpellChecker Exists Returns whether the application’s NSSpell Checker has
already been created.

1-196 Chapter 1: Application Kit OpenStep Specification—10/19/94

Managing the Spelling Panel
— (NSView *)accessoryView

— (void)setAccessoryView: (NSView *)aView

— (NSPanel *)spellingPanel

Checking Spelling

— (int)countWor dsl nString: (NSString *)aString
language: (NSString *)language

Returns the Spelling panel’s accessory NSView object.

Makes an NSView object an accessory of the Spelling
panel by making it a subview of the panel’s content
view. This method posts the notification
NSWindowDidResi zeNatification with the Spelling
panel object to the default notification center.

Returns the NSSpel | Checker’s panel.

Returns the number of wordsin string. The language
argument specifies the language used in the string. If
languageisthe empty string, the current selectioninthe
Spelling panel’s pop-up menu is used.

— (NSRange)check SpellingOfString: (NSString *)stringToCheck

startingAt: (int)startingOffset

Starts the search for amisspelled word in stringToCheck
starting at startingOffset within the string object.
Returns the range of the first misspelled word.
Wrapping occurs but no ignored-words dictionary is
used.

— (NSRange)check SpellingOf String: (NSString *)stringToCheck

startingAt: (int)startingOffset
language: (NSString *)language
wrap: (BOOL)wrapFlag
inSpelIDocumentWithTag: (int)tag
wordCount: (int *)wordCount

Setting the Language
— (NSString *)language
— (BOOL)setL anguage: (NSString *)aLanguage

OpenStep Specification—10/19/94

Starts the search for amisspelled word in stringToCheck
starting at startingOffset within the string object.
Returns the range of the first misspelled word and
optionally the word count by reference. tag is an
identifier unique within the application used to inform
the spell check which document (actually, adictionary)
of ignored words to use. wrapFlag determines whether
spell checking continues at the beginning of the string
when the end is reached. language is the language used
inthe string. If language isthe empty string, the current
selection in the Spelling panel’s pop-up menu is used.

Returns the current language used in spell-checking.

Sets the language to use in spell-checking to aLanguage.
Returns whether the Language pop-up list in the
Spelling pandl lists aLanguage.

Classes: NSSpellChecker 1-197

Managing the Spelling Process

+ (int)uniqueSpelIDocumentTag Returns a guaranteed unique tag to use as the
spell-document tag for adocument. Use this method to
generate tags to avoid collisions with other objects that
can be spell-checked.

— (void)closeSpelIDocumentWithTag: (int)tag Notifiesthe NSSpell Checker that the user hasfinished with
theignored-word document identified by tag, causing it
to throw that dictionary away.

— (void)ignoreWor d: (NSString *)wordTolgnore Instructs the NSSpell Checker to ignore al future
inSpellDocumentWithTag: (int)tag occurrences of wordTolgnore in the document
identified by tag. You should call this method from
within your implementation of the
NSIgnoreMisspelledWords protocol’s ignoreSpelling:.

— (NSArray *)ignoredWor dsl nSpellDocumentWithTag: (int)tag
Returns the array of ignored words for a document
identified by tag. Invoke this before

closeSpelIDocument: if you want to store the ignored
words.

— (void)setlgnoredWor ds: (NSArray *)someWords Initializes the ignored-words document (i.e., dictionary
inSpellDocumentWithTag: (int)tag identified by tag with someWbrds, an array of wordsto
ignore.

— (void)setWor dFieldStringValue:(NSString *)aString
Sets the string that appears in the misspelled word field,
using the string object astring.

— (void)updateSpellingPanel WithMisspelledWor d: (NSString *)word

Causes NSSpellChecker to update the Spelling panel’s
misspelled-word field to reflect word. You are
responsible for highlighting word in the document and
for extracting it from the document using the range
returned by the check Spelling:... methods. Pass the
empty string as word to have the system beep,
indicating no misspelled words were found.

1-198 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSSpellServer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSSpell Server.h

Class Description

The NSSpellServer class gives you away to make your particular spelling checker a service that’s available to any
application. A serviceisan application that declaresits availability in a standard way, so that any other applications
that wish to useit can do so. If you build a spelling checker that makes use of the NSSpellServer classand list it as
an available service, then users of any application that makes use of NSSpellChecker or includes a Services menu
will see your spelling checker as one of the available dictionaries.

To make use of NSSpell Server, you write asmall program that creates an NSSpell Server instance and a delegate
that responds to messages asking it to find a misspelled word and to suggest guesses for a misspelled word. Send
the NSSpell Server register Language:byVendor: messages to tell it the languages your delegate can handle.

The program that runs your spelling checker should not be built as an Application Kit application, but asasimple
program. Suppose you supply spelling checkers under the vendor name “Acme.” Suppose the file containing the
code for your delegate is called AcmeEnglishSpellChecker. Then the following might be your program’s main:

void main ()

{

NSSpellServer *aServer = [[NSSpellServer alloc] init];
if ([aServer registerLanguage:@"English" byVendor:@"Acme"]) {
[aServer setDelegate: [AcmeEnglishSpellChecker alloc] init]];
[aServer run];
fprintf (stderr, "Unexpected death of Acme SpellChecker!\n");
} else {
fprintf (stderr, "Unable to check in Acme SpellChecker.\n");

}
}

Your delegate is an instance of a custom subclass. (I1t's simplest to make it a subclass of NSObject, but that’s not a
requirement.) Given an NSString, your delegate must be able to find a misspelled word by implementing the
method spell Server :findMisspelledWor dI nString:language: wor dCount:countOnly: . Usually, thismethod al so
reports the number of words it has scanned, but that isn’t mandatory.

Optionally, the delegate may al so suggest corrections for misspelled words. It does so by implementing the method
spell Server : suggest GuessesFor Wor d:inL anguage:

OpenStep Specification—10/19/94 Classes: NSSpellServer 1-199

Service Availability Notice

When there's more than one spelling checker available, the user selects the one desired. The application that
requests a spelling check uses an NSSpellChecker object, and it provides a Spelling panel; in the panel there'sa
pop-up list of available spelling checkers. Your spelling checker appearsin that list if it has a service descriptor.

A servicedescriptor isan entry in atext file called services. Usually it'slocated within the bundle that also contains
your spelling checker’s executable file. The bundle (or directory) that contains the services file must have a name
ending in “.service” or “.app”. The system looks for service bundlesin a standard set of directories.

A spell checker service availability notice has astandard format, illustrated in the following example for the Acme
spelling checker:

Spell Checker: Acme
Language: French

Language: English
Executable: franglais.daemon

Thefirst line identifies the type of service; for a spelling checker, it must say “ Spell Checker:” followed by your
vendor name. The next line contains the English name of alanguage your spelling checker is prepared to check.
(The language must be one your system recognizes.) If your program can check more than one language, use an
additional linefor each additional language. The last line of a descriptor gives the name of the service's executable
file. (It requires acomplete path if it'sin adifferent directory.)

If there’s a service descriptor for your Acme spelling checker and also a service descriptor for the English checker
provided by a vendor named Consolidated, a user looking at the Spelling panel’s pop-up list would see:

English (Acme)
English (Consolidated)
French (Acme)

lllustrative Sequence of Messages to an NSSpellServer

The act of checking spelling usually involves the interplay of objectsin two classes: the user application’s
NSSpellChecker (which responds to interactions with the user) and your spelling checker’s NSSpell Server (which
provides the application interface for your spelling checker). You can see the interaction between the two in the
following list of stepsinvolved in finding a misspelled word.

» Theuser of an application selects amenu item to request a spelling check. The application sends a message
toitsNSSpellChecker object. The NSSpell Checker in turn sends a corresponding message to the appropriate
NSSpellServer.

» The NSSpellServer receives the message asking it to check the spelling of an NSString. It forwards the
message to its del egate.

e The delegate searches for amisspelled word. If it finds one, it returns an NSRange identifying the word's
location in the string.

» The NSSpellServer receives a message asking it to suggest guesses for the correct spelling of a misspelled
word, and forwards the message to its delegate.

1-200 Chapter 1: Application Kit OpenStep Specification—10/19/94

The delegate returns alist of possible corrections, which the NSSpell Server in turn returnsto the
NSSpell Checker that initiated the request.

The NSSpell Server doesn’t know what the user does with the errors its delegate has found or with the
guessesits delegate has proposed. (Perhapsthe user correctsthe document, perhaps by selecting acorrection
from the NSSpellChecker’s display of guesses; but that’s not the NSSpell Server’s responsibility.) However,
if the user pressesthe Learn or Forget buttons (thereby causing the NSSpell Checker to revise the user’sword
list), the NSSpell Server receives a notification of the word thus learned or forgotten. It's up to you whether
your spell checker acts on thisinformation. If the user presses the Ignore button, the delegate is not notified
(but the next time that word occurs in the text, the method isWor dI nUser Dictionaries: caseSensitive: will
report Y ES rather than NO).

Once the NSSpell Server del egate has reported amisspelled word, it has completed its search. Of course, it's
likely that the user’s application will then send a new message, thistime asking the NSSpell Server to check
astring containing the part of the text it didn’t get to earlier.

Checking in Your Service

— (BOOL)register Language: (NSString *)language Registers a spelling server for language by vendor.

byVendor : (NSString *)vendor

Assigning a Delegate
— (id)delegate Returns the NSSpel| Server’s del egate.
— (void)setDelegate: (id)anObject Sets the delegate of the NSSpell Server.

Running the Service

—(void)run Makes the NSSpell Server start listening for spell-checking

requests. This method should not return.

Checking User Dictionaries

— (BOOL)iswWordInUserDictionaries: (NSString *)word

caseSensitive: (BOOL)flag Returns whether word isin any open user dictionary; the
search is case-sensitiveif flag is YES.

OpenStep Specification—10/19/94 Classes: NSSpellServer 1-201

Methods Implemented by the Delegate

— (NSRange)spell Server : (NSSpell Server *)sender
findMisspelledWor dI nString:
(NSString *)stringToCheck
language: (NSString *)language
wordCount: (int *)wordCount
countOnly:(BOOL)countOnly

— (NSArray *)spellServer : (NSSpell Server *)sender
suggest GuessesFor Wor d: (NSString *)word
inLanguage: (NSString *)language

— (void)spell Server : (NSSpel| Server *)sender
didL earnWord:(NSString *)word
inL anguage: (NSString *)language

— (void)spell Ser ver : (NSSpell Server *)sender
didForgetWord: (NSString *)word
inLanguage: (NSString *)language

1-202 Chapter 1: Application Kit

Search for amisspelled word in stringToCheck, using

language, and marking the first misspelled word found
by returning its range within the string object. In
wordCount return by reference the number of words
from the beginning of the string object until the
misspelled word (or the end-of-string). If countOnly is
YES, just count the words in the string object; do not
spell-check. Send

isWor dl nUser Dictionaries. caseSensitive: to the
spelling server to determine if word existsin the user’s
language dictionaries.

Search for alternatives to the misspelled word in

language. Return guesses as an array of string objects.

Notifies the delegate of aword added to the user’s hidden

word list.

Notifies the delegate of aword removed from the user’s

hidden word list.

OpenStep Specification—10/19/94

NSSplitView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSplitView.h

Class Description

An NSSplitView object lets several views share aregion within awindow. The NSSplitView resizes its subviews
so that each subview is the same width as the NSSplitView, and the total of the subviews' heightsis equal to the
height of the NSSplitView. The NSSplitView positions its subviews so that the first subview is at the top of the
NSSplitView, and each successive subview is positioned below the previousone. The user can set the height of two
subviews by moving a horizontal bar called the divider, which makes one subview smaller and the other larger.

To add aview to an NSSplitView, you use the NSView method addSubview:. When the NSSplitView is displayed,
it checksto seeif its subviews are properly tiled. If not, it invokes the del egate method
splitView:resizeSubviewswWithOldSize:, allowing the del egate to specify the heights of specific subviews. If the
delegate doesn’t implement this method, the NSSplitView sends adjustSubviewsto itself to yield the default tiling
behavior.

When a mouse-down occurs in an NSSplitView’s divider, the NSSplitView determines the limits of the divider's
travel and tracks the mouse to allow the user to drag the divider within these limits. With the following mouse-up,
the NSSplitView resizes the two affected subviews, informs the del egate that the subviews were resized, and
displaysthe affected views and divider. The NSSplitView's del egate can constrain the travel of specific dividers by
implementing the method splitView:constrainMinCoor dinate:maxCoor dinate: of SubviewAt:.

Managing Component Views

— (void)adjustSubviews Adjusts the heights of the subviews.
— (float)divider Thickness Returns the thickness of the divider.
— (void)drawDivider I nRect: (NSRect)aRect Draws the divider in aRect.

Assigning a Delegate
—(id)delegate Returns the NSSplitView's delegate.
— (void)setDelegate: (id)anObject Sets the NSSplitView's delegate.

OpenStep Specification—10/19/94 Classes: NSSplitView 1-203

Implemented by the Delegate

— (void)splitView: (NSSplitView *)splitView Sent directly by splitView to the delegate. Allows the
constrainMinCoor dinate: (float *)min delegate to constrain further min and max
maxCoor dinate: (float *)max vertical travel of adivider. offset is an index that
of SubviewAt: (int)offset identifies the dividersin a NSSplitView from top to

bottom starting with divider O.

— (void)splitView: (NSSplitView *)sender Sent directly by splitView to the delegate. Allowsthe
resizeSubviewsWithOldSize: (NSSize)oldSze delegate to add custom resizing behavior after users
resize an NSSplitView. oldSze isthe size of the
NSSplitView before the user resized it.

— (void)splitViewDidResizeSubviews: (NSNotification *)notification
Sent by the default notification center to the delegate;
aNotification is aways
NSSplitViewDidResi zeSubviewsNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (void)splitViewWillResizeSubviews: (NSNotification *)notification
Sent by the default notification center to the delegate;
aNotification is always
NSSplitViewWillResizeSubviewsNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

1-204 Chapter 1: Application Kit OpenStep Specification—10/19/94

NST ext

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSIgnoreMisspelledWords
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTextView.h

Class Description

The NSText class declares the programmatic interface to objects that manage text. NSText objects are used by the
Application Kit wherever text appears in interface objects: An NSText object draws the title of awindow, the
commands in a menu, thetitle of a button, and the itemsin a browser. Your application inherits these uses of the
NSText class when it incorporates any of these objectsinto its interface. Your application can also create NSText
objects for its own purposes.

The NSText classis unlike most other classes in the Application Kit in its complexity and range of features. One
of itsdesign goalsisto provide a comprehensive set of text-handling features so that you'll rarely need to create a
subclass. An NSText object can (among other things):

Control the color of itstext and background.

Control the font and layout characteristics of its text.
Control whether text is editable.

Wrap text on aword or character basis.

Display graphic images within its text.

Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or EPS
images.

Let another object, the delegate, dynamically control its properties.

Let the user copy and paste text within and between applications.

Let the user copy and paste font and format information between NSText objects.
L et the user check the spelling of words in its text.

Let the user control the format of paragraphs by manipulating aruler.

OpenStep Specification—10/19/94 Classes: NSText 1-205

Graphical user-interface building tools (such as I nterface Builder) may give you accessto NSText objectsin several
different configurations, such as those found in the NSTextField, NSForm, and NSScrollView objects. These
classes configure an NSText object for their own specific purposes. Additionally, all NSTextFields, NSForms,
NSButtons within the same window—in short, all objects that access an NSText object through associated Cells—
sharethe same NSText object, reducing the memory demands of an application. Thus, it's generally best to use one
of these classes whenever it meets your needs, rather than create NSText objects yourself. If one of these classes
doesn’t provide enough flexibility for your purposes, you can create NSText objects programatically.

Plain and Rich NSText Objects

When you create an NSText object directly, by default it allows only onefont, line height, text color, and paragraph
format for the entire text. Once an NSText object is created, you can ater its global settings using methods such as
setFont: and setTextColor:. For convenience, such an NSText object will be called a plain NSText object.

To alow multiple valuesfor attributes such asfont and col or, you must send the NSText object asetRichText: YES
message. An NSText object that allows multiple fonts also allows multiple paragraph formats, line heights, and so
on. For convenience, such an NSText object will be called arich NSText object.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words are
supported: Oninput, an NSText object ignores any control word it doesn’t recognize; some of those it can read and
interpret it doesn’t write out. These are the RTF control words that an NSText object recognizes.

1-206 Chapter 1: Application Kit OpenStep Specification—10/19/94

Control Word Read Write

\ansi yes yes
\b yes yes
\cb yes yes
\cf yes yes
\colortbl yes yes
\dnn yes yes
\fin yes yes
\fn yes yes
\fonttbl yes yes
\fsn yes yes
\i yes yes
\lin yes yes
\margrn yes yes
\paperwn yes yes
\mac yes no

\marglin yes yes
\par yes yes
\pard yes no

\pca yes no

\qc yes yes
\gl yes yes
\gr yes yes
\sn yes no

\tab yes yes
\upn yes yes

NSText objects are designed to work closely with various other objects. Some of these—such as the delegate or an
embedded graphic object—require adegree of programming on your part. Others—such asthe Font panel, spelling
checker, or ruler—take no effort other than deciding whether the service should be enabled or disabled. The
following sections discuss these interrel ationships.

OpenStep Specification—10/19/94 Classes: NSText 1-207

Notifying the NST ext Object's Delegate

Many of an NSText object’s actions can be controlled through an associated object, the NSText object’s delegate.
If it implements any of the following methods, the del egate receives the corresponding message at the appropriate
time:

textDidBeginEditing:
textDidChange:
textDidEndEditing:
textShouldBeginEditing:
textShouldEndEditing:

So, for example, if the delegateimplementsthetextDidBeginEditing: method, it will receive notification upon the
user’sfirst attempt to change the text. Moreover, depending on the method's return value, the delegate can either
alow or prohibit changesto the text. See“ Methods Implemented by the Delegate” . The delegate can be any object
you choose, and one delegate can control multiple NSText objects.

Adding Graphics to the Text

A rich NSText object allows graphicsto be embedded in thetext. Each graphicistreated asasingle (possibly large)
“character”: The text's line height and character placement are adjusted to accommodate the graphic “ character.”
Graphics are embedded in the text in either of two ways: programmatically or directly through user actions. In the
programmatic approach, graphic objects are added using the replaceRange: WithRTFD: method.

An aternate means of adding an image to the text is for the user to drag an EPS or TIFF fileicon directly into an
NSText object. The NSText object automatically creates a graphic object to manage the display of theimage. This
feature requires arich NSText object that has been configured to receive dragged images—see the
setlmportsGraphics: method.

Images that have been imported in this way can be written as RTFD documents. Programmatic creation of RTFD
documentsis not supported in this version of OpenStep. RTFD documents use afile package, or directory, to store
the components of the document (the “D” stands for “directory”). The file package has the name of the document
plusa“.rtfd” extension. Thefile package aways contains afile called TXT.rtf for the text of the document, and one
or more TIFF or EPS files for the images. An NSText object can transfer information in an RTFD document to a
fileand read it from afile—see the writeRT FDToFile:atomically: and readRT FDFromFile: methods.

Cooperating with Other Objects and Ser vices

NSText objects are designed to work with the Application Kit’s font conversion system. By default, an NSText
object keeps the Font panel updated with the font of the current selection. It also changes the font of the selection
(for arich NSText object) or of the entiretext (for adefault NSText object) to reflect the user’s choices in the Font
panel or menu. To disconnect an NSText object from this service, send it a setUsesFontPanel:NO message.

If an NSText object isasubview of an NSScrollView, it can cooperate with the NSScrollView to display and update
aruler that displaysformatting information. The NSScrollView retilesits subviewsto make room for theruler, and
the NSText object updates the ruler with the format information of the paragraph containing the selection. The
toggleRuler: method controls the display of this ruler. Users can modify paragraph formats by manipulating the
components of the ruler.

1-208 Chapter 1: Application Kit OpenStep Specification—10/19/94

Coordinates and sizes mentioned in the method descriptions below are in PostScript units—1/72 of an inch.

Getting and Setting Contents

— (void)replaceRange: (NSRange)range
withRTF:(NSData *)rtfData

— (void)replaceRange: (NSRange)range
withRTFD: (NSData *)rtfdData

— (NSData *)RTFDFromRange: (NSRange)range

— (NSData *)RTFFromRange: (NSRange)range

— (void)setText: (NSString *)string

— (void)set Text: (NSString *)string
range: (NSRange)range

— (NSString *)text

Managing Global Characteristics

— (NSTextAlignment)alignment

—(BOOL)drawsBackground

— (BOOL)importsGraphics

— (BOOL)isEditable

—(BOOL)isRichText

— (BOOL)isSelectable

— (void)setAlignment: (NSTextAlignment)mode

— (void)setDrawsBackground: (BOOL)flag
— (void)setEditable: (BOOL)flag
— (void)setlmportsGraphics; (BOOL)flag

OpenStep Specification—10/19/94

Replaces the characters within the specified range of
text with the RTF datartfData.

Replaces the characters within the specified range of
text with the RTFD data rtfdData.

Extracts the specified range of RTFD text from the NSText
object and returns an data object initialized with that
text.

Extracts the specified range of RTF text from the NSText
object and returnsadataobject initialized with that text.
This datais formatted according to the RTF file format.

Sets the contents of the NSText object to be string.

Replaces the charactersin the specified range of text in the
NSText object to be string.

Returns the contents of the NSText object as aimmutable
string object.

Returns how text in the NSText object is aligned between
the margins.

Returns whether the NSText object drawsits own
background.

Returns whether the NSText object can accept images.
Returns whether users can edit the NSText object.

Returns whether the text in the NSText object is RTF.
Returns whether users can select text in the NSText object.

Sets how the text in the NSText object is aligned between
the margins.

Sets whether the NSText object draws its own background.
Sets whether users can edit text in the NSText object.

Sets whether the NSText object can accept images.

Classes: NSText 1-209

— (void)setRichText: (BOOL)flag

— (void)setSelectable: (BOOL)flag

Managing Font and Color
— (NSColor *)backgroundColor
— (void)changeFont: (id)sender
— (NSFont *)font
— (void)setBackgroundColor:(NSColor *)color

— (void)setColor:(NSColor *)color
ofRange: (NSRange)range

— (void)setFont: (NSFont *)obj

— (void)setFont: (NSFont *)font
ofRange: (NSRange)range

— (void)setTextColor: (NSColor *)color
— (void)setUsesFontPanel: (BOOL)flag
— (NSColor *)textColor

— (BOOL)usesFontPanel

Managing the Selection
— (NSRange)selectedRange
— (void)setSelectedRange: (NSRange)range

Sizing the Frame Rectangle
—(BOOL)isHorizontallyResizable
— (BOOL)isVerticallyResizable
— (NSSize)maxSize
— (NSSize)minSize
— (void)setHorizontallyResizable:(BOOL)flag

1-210 Chapter 1: Application Kit

Sets whether the text in the NSText object alows for
multiple values of attributes, such as color and font (i.e.
RTF).

Sets whether users can select text in the NSText object.

Returns the background color for the NSText object.
Initiates a font-change session.

Returns the default NSFont object for the NSText object.
Sets the background color for the NSText object.

Sets the color for the specified range of text in the
NSText object to color.

Sets the default NSFont object for the NSText object.

Sets the font for the specified range of text in the
NSText object to font.

Sets the textual color for the NSText object.

Sets whether the NSText object uses the font panel.
Returns the textual color for the NSText object.
Returns whether the NSText object uses the font panel

Returns the range of the selected text in the NSText object.

Sets the range of selected text in the NSText object.

Returns whether the frame width can change.
Returns whether the frame height can change.
Gets the maximum size of the NSTextView’s frame.
Gets the minimum size of the NSTextView’s frame.

Sets whether the frame’s width can change.

OpenStep Specification—10/19/94

— (void)setM axSize: (NSSize)newMaxS ze

— (void)setMinSize: (NSSize)newMinS ze
— (void)setVerticallyResizable: (BOOL)flag

— (void)sizeToFit

Responding to Editing Commands
— (void)alignCenter: (id)sender
— (void)alignL eft: (id)sender
— (void)alignRight: (id)sender
— (void)copy: (id)sender
— (void)copyFont: (id)sender
— (void)copyRuler : (id)sender
— (void)cut: (id)sender

— (void)delete: (id)sender

— (void)paste: (id)sender

— (void)pasteFont: (id)sender

— (void)pasteRuler:(id)sender
— (void)selectAll: (id)sender
— (void)subscript: (id)sender

— (void)superscript:(id)sender

OpenStep Specification—10/19/94

Sets the maximum size of the NSText object to
newMaxS ze.

Setsthe minimum size of the NSText object to newMinS ze.
Sets whether the frame's height can change.

Resizes the frameto fit just around the text.

Centers the selected text between the margins.

Aligns selected text to the left margin.

Aligns selected text the right margin.

Copies the selected text to the pasteboard.

Copies the selected text’s font to the pasteboard.
Copies the selected text’s ruler to the pasteboard.
Deletes the selected text and copies it to the pasteboard.

Deletesthe selected text. Thismethod poststhe notification
NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.
(NSTextDidEndEditingNotification gets posted when
thefirst responder changes.)

Replaces the selected text with the contents of the
pasteboard. This method posts the notification
NSTextDidChangeNotification with the receiving
obj ect to the default notification center and may post the
NSTextDidBeginEditing notification as well.

Replaces the selection’s font with the pasteboard contents.
This method posts the NSTextDidChangeNotification
notification with the receiving object to the default
notification center and may post the
NSTextDidBeginEditing notification as well.

Replaces the selection’s ruler with the pasteboard contents.
Selects all text in the NSText object.
Subscripts the current selection.

Superscripts the current selection.

Classes: NSText 1-211

— (void)underline: (id)sender

— (void)unscript: (id)sender

Managing the Ruler
—(BOOL)isRulerVisible

— (void)toggleRuler : (id)sender

Spelling
— (void)check Spelling: (id)sender
— (void)showGuessPane!: (id)sender

Scrolling

— (void)scrollRangeToVisible: (NSRange)range
Reading and Writing RTFD Files

—(BOOL)readRTFDFromFile:(NSString *)path

— (BOOL)writeRTFDToFile:(NSString *)path
atomically: (BOOL)flag

Managing the Field Editor
—(BOOL)isFieldEditor

— (void)setFieldEditor: (BOOL)flag

Managing the Delegate
—(id)delegate
— (void)setDelegate: (id)anObject

1-212 Chapter 1: Application Kit

Underlines the selected text.

Removes superscript or subscript in the current selection.

Returns whether the ruler isvisible.

Displaysthe ruler if it’s not visible, and removesit if itis
visible.

Initiates a spell-checking session.

Displays the spell-checker’s Show Guess panel.

Scrollsthe NSText object so that therange of textisvisible.

Reads RTFD data from the file package specified by path
andinitializesan NSText object with it; returnswhether
the operation succeeded.

Writes RTFD data from the receiving NSText object
to the file package specified by path. flag determines
whether writing occurs atomically. Returnswhether the
operation succeeded.

Returns whether the receiving NSText object givesup First
Responder status on tab, carriage return, etc.

Setswhether the receiving NSText object isto be used asa
field editor. flag indicates whether to end on carriage
return, tab, or other terminating character.

Returns the delegate of the NSText object.
Makes anObject the NSText object’s del egate.

OpenStep Specification—10/19/94

Implemented by the Delegate

— (void)textDidBeginEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is always
NSTextDidBeginEditingNotification. If the delegate
implementsthismethod, it'sautomatically registered to
receive this notification.

— (void)textDidChange: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification isalways NSTextDidChangeNotification.
If the delegate implements this method, it's
automatically registered to receive this notification.

— (void)textDidEndEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotification is adways
NSTextDidEndEditingNotification. If the delegate
implementsthismethod, it’sautomatically registered to
receive this notification.

— (BOOL)textShouldBeginEditing: (NSText *)textObject
Sent directly by textObject to the delegate. Informs
delegate of an impending textual change. Y ES means
go ahead and make the change.

— (BOOL)textShouldEndEditing: (NSText *)textObject
Sent directly by textObject to the delegate. Warns del egate
of the impending loss of First Responder status. YES
means go ahead and change status.

OpenStep Specification—10/19/94 Classes: NSText 1-213

NST extField

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSTextField.h

Class Description

An NSTextField isan NSControl object that can display a piece of text that a user can select or edit, and which
sends an action messageto itstarget if the user hitsthe Return key while editing. An NSTextField can also belinked
to other NSTextFields, so that when the user presses Tab or Shift-Tab, the object assigned as the “next” or
“previous’ field gets a message to select its text.

AnNSTextField isagood alternative to an NSText object for small regions of editable text, since the display of the
NSTextField is achieved by using a global NSText object shared by objects all over your application, which saves
on memory usage. Each NSWindow also has an NSText object used for editing of NSTextFields (and
NSTextFieldCellsin NSMatrices). An NSWindow’s global NSText object iscalled afield editor, sinceit’s attached
asneeded to an NSTextField to perform its editing. NSTextField allowsyou to specify an object to act asan indirect
delegateto thefield editor; the NSTextField itself actsasthe NSText delegateif it needsto, then passesthe delegate
method on to its own NSText delegate.

Setting User Access to Text

—(BOOL)isEditable Returns whether the NSTextField' s text is editable.

—(BOOL)isSelectable Returns whether the NSTextField's text is selectable.

— (void)setEditable: (BOOL)flag Sets whether the NSTextField's text is editable.

— (void)setSelectable: (BOOL))flag Sets whether the NSTextField's text is selectable.
Editing Text

— (void)select Text: (id)sender Selects all of thetext if it's selectable or editable.

Setting Tab Key Behavior

— (id)next Text Gets the object selected when the user presses Tab.
— (id)previousText Gets the object selected when the user presses Shift-Tab.
— (void)setNextText: (id)anObject Sets the object selected when the user presses Tab.

1-214 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setPreviousText: (id)anObject

Assigning a Delegate

— (void)setDelegate: (id)anObject

— (id)delegate

Modifying Graphic Attributes
— (NSColor *)backgroundColor
— (BOOL)drawsBackground

—(BOOL)isBezeled

—(BOOL)isBordered

— (void)setBackgroundColor: (NSColor *)aColor
— (void)setBezeled: (BOOL)flag

— (void)setBordered: (BOOL)flag

— (void)setDrawsBackground:(BOOL)flag

— (void)setTextColor : (NSColor *)aColor
— (NSCaolor *)textColor

Target and Action
—(SEL)errorAction
— (void)setError Action: (SEL)aSelector

Handling Events

— (BOOL)acceptsFir stResponder

OpenStep Specification—10/19/94

Sets the object selected when the user presses Shift-Tab.

Sets the delegate for messages from the field editor to
anObject.

Returns the delegate for messages from the field editor.

Returns the color of the background.

Returns whether the NSTextField draws its own
background.

Returns whether the NSTextField has a bezeled border.
Returns whether the NSTextField has a plain border.
Sets the color of the background to aColor.

Sets whether the NSTextField has a bezeled border.
Sets whether the NSTextField has a plain border.

Sets whether the NSTextField draws its own background
color.

Sets the color of the NSTextField's text to aColor.

Returns the color of the NSTextField's text.

Returns the action method sent for an invalid value.

Setsthe action method sent (aSelector) for aninvalid value
entered.

Return YESIif text is editable or selectable.

Classes: NSTextField 1-215

— (void)textDidBeginEditing: (NSNotification *)natification

Invoked when there’s achange in the text after the receiver
gainsfirst responder status. The default behavior isto
pass this message on to the text delegate by posting the
notification NSControl TextDidEndEditingNotification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

— (void)textDidChange: (NSNatification *)notification
Invoked upon a key-down event or paste operation that

changesthe receiver’s contents. The default behavior is
to pass this message on to the text delegate by posting
the NSControl TextDidChangeNotification notification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

— (void)textDidEndEditing: (NSNotification *)notification
Invoked when text editing ends. The default behavior isto
pass this message on to the text del egate by posting the
notification NSControl TextDidEndEditingNatification
with the receiving object and, in the notification’'s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

— (BOOL)textShouldBeginEditing: (NSText *)textObject
Invoked to let the NSTextField respond to impending
changesto its text and then forwarded to the text
delegate.

— (BOOL)text ShouldEndEditing: (NSText *)textObject
Invoked to let the NSTextField respond to impending loss
of first responder status and then forwarded to the text
delegate.

1-216 Chapter 1: Application Kit OpenStep Specification—10/19/94

NST extFieldCell

Inherits From:

Conforms To:
NSObject (NSObject)

Declared In:

Class Description

AppKit/NSTextFieldCell.h

NSActionCell : NSCell : NSObject
NSCoding, NSCopying (NSCell)

NSCellsdisplay text or images—an NSTextFieldCell issimply an NSCell that displaystext and that keepstrack of
its background and text colors. Normally, the NSCell class assumes white as the background when bezeled, and
light gray otherwise, and the text is always black. With NSTextFieldCell, you can specify those colors.

Modifying Graphic Attributes
— (NSColor *)backgroundColor
—(BOOL)drawsBackground

— (void)setBackgroundColor :(NSColor *)aColor
— (void)setDrawsBackground:(BOOL)flag

— (void)setTextColor:(NSColor *)aColor
—(id)setUpFieldEditor Attributes: (id)textObject

— (NSCaolor *)textColor

OpenStep Specification—10/19/94

Returns the color of the background.

Returns whether the NSTextFieldCell draws its own
background.

Sets the color of the background to aColor.

Sets whether the NSTextFieldCell draws its own
background.

Sets the color of the text to aColor.

Sets text attributes of the field editor to be the same as
those of textObject. Used to set the attributes of text
such as color and background color, for which there are
no explicit methods.

Returns the color of the text.

Classes: NSTextFieldCell 1-217

NSView

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSView.h

AppKit/NSClipView.h

Class Description

NSView isan abstract class that provides its subclasses with a structure for drawing and for handling events. Any
application that needs to display, print, or receive events must use NSView objects.

To be displayed, aview must be placed in awindow (represented by an NSWindow object). All the viewswithin a
window are arranged in a hierarchy, with each view having a single superview and zero or more subviews. Each
view hasits own areato draw in and its own coordinate system, expressed as a transformation of its superview’s
coordinate system. An NSView object can scale, trandlate, or rotate its coordinates, or flip the polarity of itsy-axis.

An NSView keeps track of its size and location in two ways:. as aframe rectangle (expressed in its superview's
coordinate system) and as a bounds rectangle (expressed in its own coordinate system). Both are represented by
NSRect structures.

Subclasses of NSView typically override drawRect: to implement an object’s distinctive appearance. They also
frequently override one or more of NSView’s or NSResponder’s event-handling methods, to react to the user’'s
mani pulations of the mouse and keyboard.

Initializing NSView Objects
— (id)initWithFrame: (NSRect)frameRect Initializes a new NSView object to the location and

dimensions of frameRect.

Managing the NSView Hierarchy

— (void)addSubview: (NSView *)aView Makes aView a subview of the receiving view object.

— (void)addSubview: (NSView *)aView Makes aView a subview of the receiving view object.
positioned: (NSWindowOrderingM ode)place It is positioned relative to otherView according to
relativeTo: (NSView *)otherView place.

1-218 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (NSView *)ancestor SharedWithView: (NSView *)aView

— (BOOL)isDescendantOf: (NSView *)aView
— (NSView *)opaqueAncestor
— (void)removeFromSuperview

— (void)replaceSubview: (NSView *)oldView
with: (NSView *)newMiew

Returns the ancestor view shared by aView and the
receiver; self if avView isthe receiving view or if the
receiving view isthe ancestor of aView; aView if itisthe
superview of the receiving view; or nil in any other
case.

Returns whether aView is an ancestor of the receiver.
Returns the receiver’'s nearest opaque ancestor.
Removes the receiver from the view hierarchy.

Replaces oldView with newView.

— (void)sortSubviewsUsingFunction: (int (*)(id ,id ,void *))compare

context: (void *)context

— (NSArray *)subviews

— (NSView *)superview

— (NSWindow *)window

Sorts the receiving view's subviews using the sorting
function compare and the context context. The first two
arguments of the function are the viewsto be compared.

Returns a mutable array of the receiving view object’s
subviews.

Returns the receiving view object’s superview.

Returns the window in which the view is displayed.

— (void)viewWilIM oveToWindow: (NSWindow *)nenw\Wndow

Modifying the Frame Rectangle
— (float)frameRotation
— (NSRect)frame

— (void)rotateByAngle: (float)angle

— (void)setFrame: (NSRect)frameRect
— (void)setFrameOrigin:(NSPoint)newOrigin

OpenStep Specification—10/19/94

Notifies the view that it will move to a new window.

Returns the angle of the frame rectangl€’s rotation.
Getsthe view’'s frame rectangle.

Rotates the view's frame rectangle by angle. This method
posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Assigns the view a new frame rectangle.

Sets the origin of the view’s frame to newOrigin. This
method posts the NSViewFrameChangedNotification
and NSViewFocusChangedNotification notifications
with the receiving object to the default notification
center.

Classes: NSview 1-219

— (void)setFrameRotation: (float)angle

— (void)setFrameSize: (NSSize)newSize

Modifying the Coordinate System

— (float)boundsRotation

— (NSRect)bounds

— (BOOL)isFlipped

—(BOOL)isRotatedFromBase

— (BOOL)isRotatedOr ScaledFromBase
— (void)scaleUnitSquar eToSize: (NSSize)newS ze

— (void)setBounds: (NSRect)aRect
— (void)setBoundsOrigin: (NSPoint)newQrigin

— (void)setBoundsRotation: (float)angle

— (void)setBoundsSize: (NSSize)newS ze

— (void)translateOriginToPoint: (NSPoint)point

1-220 Chapter 1: Application Kit

Rotates the view’s frame to angle. This method posts the
NSViewFocusChangedNoatification notification with
the receiving object to the default notification center.

Resizestheview’sframeto newSze. Thismethod poststhe
NSViewFrameChangedNotification and
NSViewFocusChangedNotification notifications with
the receiving object to the default notification center.

Returns the rotation of the view’s coordinate system.
Gets the view’s bounds rectangle.

Returns whether the view is flipped.

Returns whether the view is rotated.

Returns whether the view is rotated or scaled.

Scales the NSView’s coordinate system unit size to
newSze. This method posts the notification
NSViewFocusChangedNotification with the receiving
object to the default notification center.

Sets the NSView’s bounds rectangle to aRect.

Sets the NSView's drawing origin to newQrigin. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Rotates the NSView's coordinate system to angle. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Resizes the NSView’s coordinate system to newSze. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Shifts the NSView’s coordinate system to point. This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

OpenStep Specification—10/19/94

Converting Coordinates

— (NSRect)center ScanRect: (NSRect)aRect Converts the rectangle aRect to lie on centers of pixels.

— (NSPoint)convertPoint: (N SPoint)aPoint Converts aPoint in aView to the receiver’s coordinates.
fromView: (NSView *)aView

— (NSPoint)conver tPoint: (NSPoint)aPoint Converts aPoint in the receiver to avView's coordinates.
toView:(NSView *)aView

— (NSRect)conver tRect: (NSRect)aRect Converts the rectangle aRect in aView to the receiver’'s
fromView: (NSView *)aView coordinates.

— (NSRect)convertRect: (NSRect)aRect Converts the rectangle aRect in the receiver to aView's
toView:(NSView *)aView coordinates.

— (NSSize)convertSize:(NSSize)aS ze ConvertsaSze in aView to the receiver’s coordinates.

fromView: (NSView *)aView

— (NSSize)convertSize: (NSSize)aSze Converts aSze in the receiver to aView's coordinates.
toView: (NSView *)aview

Notifying Ancestor Views

— (BOOL)postsFrameChangedNoatifications Returns whether notifications of frame changes to
ancestors are activated.

— (void)setPostsFrameChangedNotifications: (BOOL)flag
Sets whether to activate ancestor notifications.

Resizing Subviews

— (void)resizeSubviewsWithOldSize: (NSSize)oldS ze
Initiates superviewSizeChanged: messagesto subviews.

— (void)setAutor esizesSubviews: (BOOL)flag Sets whether to notify subviews of resizing.

— (BOOL)autoresizesSubviews Returns whether the NSView notifies subviews of resizing.
— (void)setAutoresizingM ask: (unsigned intymask Determines automatic resizing behavior.

— (unsigned int)autor esizingM ask Returns the NSView’s autosizing mask.

— (void)resizeWithOldSuperviewSize: (NSSize)oldS ze
Notifies subviews that the superview changed size.

OpenStep Specification—10/19/94 Classes: NSView 1-221

Graphics State Objects
— (void)allocateGState
— (void)releaseGState
— (int)gState

— (void)renewGState

— (void)setUpGState

Focusing
+ (NSView *)focusView
— (void)lockFocus

— (void)unlockFocus

Displaying
—(BOOL)canDraw
— (void)display
— (void)displayl fNeeded

— (void)displayl fNeededl gnoringOpacity

— (void)displayRect: (NSRect)aRect

Allocates a graphics state object.
Release the NSView's graphics state object.
Returns the NSView’s graphics state object.

Marks the NSView's graphics state object as needing
initialization.

Sets up the NSView's graphics state object.

Returns the currently focused view.
Brings the receiving view into focus.

Unfocuses the receiving view.

Returns whether the view object can draw.
Displays the receiving view and its subviews.

Conditionally displaysthe receiving view and its subviews
(if opague).

Conditionally displaysthereceiving view and its subviews,
regardless of opacity.

Displays the receiving view and its subviews (if opaque)
within aRect.

— (void)displayRectl gnoringOpacity: (NSRect)aRect Displaysthe receiving view and its subviews (regardless of

— (void)drawRect: (NSRect)rect

— (NSRect)visibleRect
—(BOOL)isOpaque

— (BOOL)needsDisplay

— (void)setNeedsDisplay: (BOOL)flag

1-222 Chapter 1: Application Kit

opacity) within aRect.
Implemented by subclassesto supply drawing instructions.
Getsthe receiving view’s visible portion.
Returns whether the view is opague.
Returns whether the view needs to be redisplayed.

If flag is YES, marks the view as changed, needing
redisplay.

OpenStep Specification—10/19/94

— (void)setNeedsDisplayl nRect: (NSRect)invalidRect Marksthe view as changed, needing redisplay in rectangle

invalidRect.
— (BOOL)shouldDrawColor Returns whether the view should be drawn in color.
Scrolling
— (NSRect)adjustScroll: (NSRect)newVisible Lets the view object adjust the visible rectangle.
— (BOOL)autoscroll: (NSEvent *)theEvent Scrollsin response to a mouse-dragged event.

— (void)reflectScrolledClipView:(NSClipView *)aClipView
Reflects scrolling within clip view aClipView.

— (void)scrollClipView: (NSClipView *)aClipMiew Scrollsthe clip view aClipView to aPoint.
toPoint: (NSPoint)aPoint

— (void)scr ol Point: (N SPoint)aPoint Aligns aPoint with the content view’s origin.

— (void)scrollRect: (NSRect)aRect Shifts the rectangle aRect by delta.
by: (NSSize)delta

— (BOOL)scrollRectToVisible: (NSRect)aRect Scrolls the view so the rectangle aRect isvisible.

Managing the Cursor

— (void)addCur sor Rect: (NSRect)aRect Adds a cursor rectangle aRect for cursor anObject to the
cursor : (NSCursor *)anObject NSView.

— (void)discardCur sor Rects Removes all cursor rectanglesin the view.

— (void)removeCur sor Rect: (NSRect)aRect Removes cursor rectangle aRect for cursor anObject from
cur sor : (NSCursor *)anObject the view.

— (void)resetCur sor Rects Implemented by subclassesto reset their cursor rectangles.

Assigning a Tag
— (int)tag Returns the view object’stag.

— (id)viewWithTag: (int)aTag Returns the subview object with aTag asitstag.

Aiding Event Handling
— (BOOL)acceptsFirstM ouse: (NSEvent *)theEvent Returns whether the view object acceptsfirst mouse-down

events.
— (NSView *)hitTest: (NSPoint)aPoint Returns the lowest subview containing the point aPoint.
— (BOOL)mouse: (N SPoint)aPoint Returns whether the point aPoint lies inside the aRect.

inRect: (NSRect)aRect

OpenStep Specification—10/19/94 Classes: NSView 1-223

— (BOOL)performKeyEquivalent: (NSEvent *)theEvent

Implemented by subclasses to perform key-equivalent
commands. Returns whether a subview handled
theEvent.

- (void)removeTrackingRect: (NSTrackingRectTag)tag

Removes the tracking rectangle identified by tag from the
view. (tag is an unique identifier returned from the
addTractingRect:owner :assumel nside: method.)

— (BOOL)shouldDelayWindowOr der ingFor Event: (NSEvent *)anEvent
Returns whether the view's window is brought forward
normally (mouse-down) or delayed (mouse-up).

— (NSTrackingRectTag)add Tr ackingRect: (NSRect)aRect

owner: (id)anObject Adds atracking rectangle (aRect) owned by anObject to
user Data: (void *)data the receiving NSView.
assumel nside: (BOOL)flag flag indicates whether the tracking rectangle will be

only inside the NSView. Returns a unique tag that
identifies the tracking rectangle.

Dragging

— (BOOL)dragFile:(NSString *)filename Initiates a file-dragging session, dragging file indicated
fromRect: (NSRect)rect by path filename. rect describes the position of theicon
slideBack:(BOOL)dlideFlag in the View's coordinates. dideFlag determines
event: (NSEvent *)event whether the NSImage should slide back if rejected

— (void)dragl mage: (NSImage *)anlmage Initiates an image-dragging session, dragging anlmage
at: (NSPoint)viewLocation from viewLocation. initial Offset is the difference in
offset: (NSSize)initial Offset the mouse location from the mouse-down.
event: (NSEvent *)event pboard is the pasteboard holding the data.
pasteboard: (NSPasteboard *)pboard sourceObject is the object receiving
sour ce: (id)sourceObject NSDraggingSource messages. slideFlag determines
dideBack:(BOOL)dlideFlag whether the NSImage should slide back if rejected.

— (void)register For DraggedTypes: (NSArray *)newTypes
Registers the pasteboard types that the window will accept
in an image-dragging session.

— (void)unregister DraggedTypes Unregisters the window as a recipient of dragged images.

1-224 Chapter 1: Application Kit OpenStep Specification—10/19/94

Printing

— (NSDhata *)datawithEPS| nsideRect: (NSRect)aRect
Returns a data object initialized with the EPS data within

— (void)fax: (id)sender
— (void)print:(id)sender

— (void)writeEPSI nsideRect: (NSRect)rect
toPasteboar d: (NSPasteboard *)pasteboard

Pagination

— (void)adjustPageHeightNew: (float *)newBottom
top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

— (void)adj ustPagewWidthNew: (float *)newRight
left: (float)ol dLeft
right: (float)oldRight
limit: (float)rightLimit

— (float)heightAdjustL imit

— (BOOL)knowsPagesFir st:(int *)firstPageNum
last: (int *)lastPageNum

— (NSPoint)locationOfPrintRect: (NSRect)aRect
— (NSRect)rectFor Page: (int)page
— (float)widthAdjustL imit

Writing Conforming PostScript
— (void)addToPageSetup

— (void)beginPage: (int)ordinal Num
label: (NSString *)aString
bBox: (NSRect)pageRect
fonts: (NSString *)fontNames

— (void)beginPageSetupRect: (NSRect)aRect
placement: (NSPoint)location

OpenStep Specification—10/19/94

aRect in the receiving view.
Faxes the view and its subviews.
Prints the view and its subviews.

Places PostScript code for the rectangle rect on the
pasteboard.

Assists automatic pagination of the view object.

Assists automatic pagination of the view object.

Returns how much of a page can go on the next page.

Returns whether the view paginates itself.

Locates the printing rectangle on the page.
Provides how much of the view will print on page.

Returns how much of a page can go on the next page.

Allows you to adjust for differences in the graphics state

between the screen and the printer.

Writes a page separator.

Writes the beginning of a page setup section.

Classes: NSView 1-225

— (void)beginPrologueBBox: (NSRect)boundingBox Writes the header for a print job.
creationDate: (NSString *)dateCreated
createdBy: (NSString *)anApplication
fonts: (NSString *)fontNames
forWwhom: (NSString *)user
pages: (int)numPages
title:(NSString *)aTitle

— (void)beginSetup Writes the beginning of the job setup section.
—(void)beginTrailer Writes the beginning of the trailer for the print job.

— (void)drawPageBor der WithSize: (NSSize)border S ze
Implemented by subclasses to draw in margins (e.g.,
borders, numbering). border Sze is the size of the
border.

— (void)drawSheetBor der WithSize: (NSSize)border S ze
Implemented by subclasses to draw in margins (e.g.,
borders, numbering). border Szeis the size of the

border.
— (void)endHeader Comments Writes the end of the header.
— (void)endPrologue Writes the end of the prologue.
— (void)endSetup Writes the end of the job setup section.
— (void)endPageSetup Writes the end of a page setup section.
— (void)endPage Writes the end of apage.
— (void)endTrailer Writes the end of the trailer.

1-226 Chapter 1. Application Kit OpenStep Specification—10/19/94

NSWindow

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSWindow.h

Class Description

The NSWindow class defines objects that manage and coordinate the windows that an application displays on the
screen. A single NSWindow object corresponds to, at most, one window. The two principle functions of an
NSWindow are to provide an areain which views can be placed, and to accept and distribute, to the appropriate
NSViews, events that the user instigates by manipulating the mouse and keyboard.

Rectangles, Views, and the View Hierarchy

An NSWindow is defined by a frame rectangle that encloses the entire window, including its title bar, resize bar,
and border, and by a content rectangle that encloses just its content area. Both rectangles are specified in the screen
coordinate system. The frame rectangle establishes the NSWindow’s base coordinate system. This coordinate
system is aways aligned with and is measured in the same increments as the screen coordinate system (in other
words, the base coordinate system can't be rotated or scaled). The origin of abase coordinate system is the bottom
left corner of the window’s frame rectangle.

You create an NSWindow (through one of theinit:... methods) by specifying, among other attributes, the size and
location of its content rectangle. The frame rectangle is derived from the dimensions of the content rectangle.

When it's created, an NSWindow automatically createstwo NSViews: an opaque frame view and a transparent
content view that fillsthe content area. The frame view isaprivate object that your application can’t access directly.
The content view isthe“highest” accessible view in the window; you can replace the content view with an NSView
of your own creation through NSWindow's setContentView: method.

You add other views to the window by declaring each to be a subview of the content view, or a subview of one of
the content view’s subviews, and so on, through NSView’s addSubview: method. This tree of viewsis called the
window’s view hierarchy. When an NSWindow istold to display itself, it does so by sending view-displaying
messages to each object in its view hierarchy. Because displaying is carried out in a determined order, the content
view (which is drawn first) may be wholly or partially obscured by its subviews, and these subviews may be
obscured by their subviews (and so on).

OpenStep Specification—10/19/94 Classes: NSWindow 1-227

Event Handling

The window system and the NSA pplication object forward mouse and keyboard events to the appropriate
NSwindow object. The NSWindow that’s currently designated to receive keyboard events is known as the key
window. If the mouse or keyboard event affects the window directly—resizing or moving it, for example—the
NSwindow performs the appropriate operation itself and sends messagesto its delegate informing it of its
intentions, thus allowing your application to intercede. Eventsthat are directed at specific viewswithin the window
are forwarded by the NSWindow to the NSView.

The NSWindow keepstrack of the object that waslast sel ected to handle keyboard events asitsfirst responder. The
first responder istypically the NSView that displays the current selection. In addition to keyboard events, the first
responder is sent action messages that have a user-selected target (anil target in program code). The NSWindow
continually updates the first responder in response to the user’s mouse actions.

Each NSWindow provides afield editor, an NSText object that handles small-scale text-editing chores. The field
editor can be used by the NSWindow’s first responder to edit the text that it displays. The fieldEditor :for Object:
method returns the NSWindow’s field editor. (You can make this method instead return an alternative NSText
object, appropriate for the object specified the second argument, by implementing the del egate method
windowWillReturnFieldEditor:toObject:.)

Initializing and Getting a New NSWindow Object
— (id)initWithContentRect: (NSRect)contentRect Initializes the new window object with alocation and

styleM ask: (unsigned int)aStyle size for content of contentRect, awindow style and

backing: (NSBackingStoreType)bufferingType buttons asindicated in the bitmap mask atyle, drawing

defer:(BOOL)flag buffering as indicated by bufferingType. If flag is YES,
thewindow system defers creating the window until it's
needed.

— (id)initWithContentRect: (NSRect)contentRect Initializes the new window object for a screen as specified
styleM ask: (unsigned int)aStyle by aScreen, with alocation and size for content of
backing: (NSBackingStoreType)bufferingType contentRect, awindow style and buttons asindicated in
defer:(BOOL)flag the bitmap mask atyle, drawing buffering asindicated
screen: (NSScreen *)aScreen by bufferingType. If flag is Y ES,the window system

defers creating the window until it's needed.

Computing Frame and Content Rectangles

+ (NSRect)contentRectFor FrameRect: (NSRect)aRect
styleM ask: (unsigned int)aStyle Gets the content rectangle for frame rectangle aRect in a
window of type aStyle.

+ (NSRect)frameRectFor ContentRect: (NSRect)aRect
styleM ask: (unsigned int)aStyle Gets the frame rectangle for content rectangle aRect in a
window of type aStyle.

1-228 Chapter 1: Application Kit OpenStep Specification—10/19/94

+ (float)minFrameWidthWithTitle:(NSString *)aTitle
styleM ask: (unsigned int)aStyle Returns the minimum frame width needed for aTitlein a
window of type aStyle.

Accessing the Content View
— (id)contentView Returns the NSWindow’s content view.

— (void)setContentView: (NSView *)aView Makes aView the NSWindow’s content view.

Window Graphics
— (NSColor *)backgroundColor Returns the window’s background color.

— (NSString *)representedFilename Returns the filename associated with this window
(regardless of thetitle string).

— (void)setBackgroundColor: (NSColor *)color Sets the window's background color to color.

— (void)setRepresentedFilename: (NSString *)aString
AltersaString by formatting it as apath and filename, then
sets the filename associated with this window to the
result. If filename doesn’t include a path to thefile, the
current working directory is used. This method doesn’t
affect the title string.

—(void)setTitle: (NSString *)aString Makes aString the window’stitle.

— (void)set TitlewithRepresentedFilename: (NSString *)aString
Invokes setRepresentedFilename: and makesthe
resultant string the window’s title.

— (unsigned int)styleM ask Returns the window’s border and title-bar style.

— (NSString *)title Returns the window’ s title string.

Window Device Attributes

— (NSBackingStoreType)backingType Returns the type of the window device's backing store.

— (NSDictionary *)deviceDescription Returns the window device's attributes as key/val ue pairs.
—(int)gState Returns the graphics-state object for the window object.
—(BOOL)isOneShot Returns whether backing-store memory for the window is

freed when the window is ordered off-screen.

— (void)setBackingType: (NSBackingStoreType)type Sets the type of window-device backing store.

OpenStep Specification—10/19/94 Classes: NSWindow 1-229

— (void)setOneShot: (BOOL)flag

— (intjwindowNumber

The Miniwindow
— (NSImage *)miniwindowl mage
— (NSString *)miniwindowTitle
— (void)setMiniwindowl mage: (NSImage *)image
— (void)setM iniwindowTitle: (NSString *)title

The Field Editor
— (void)endEditingFor :(id)anObject

— (NSText *)fieldEditor: (BOOL)createFlag
for Obj ect: (id)anObject

Window Status and Ordering

— (void)becomeK eyWindow

— (void)becomeM ainWindow

— (BOOL)canBecomeK eyWindow

— (BOOL)canBecomeM ainWindow

— (BOOL)hidesOnDeactivate
— (BOOL)isKeyWindow

— (BOOL)isM ainWindow

1-230 Chapter 1: Application Kit

Setswhether backing-store memory for the window should
be freed when the window is ordered off-screen.

Returns the window number.

Returns the image that’s displayed in the miniwindow.
Returnsthe title that’s displayed in the miniwindow.
Sets the image that’s displayed in the miniwindow.
Sets the title that’s displayed in the miniwindow.

Endsthe field editor’s editing assignment for anObject.

Returns the window object’s field editor for anObject.
If the field editor does not exist and createFlag is YES,
creates afield editor.

Records the window’s new status as the key window. This
method posts the notification
NSWindowDidBecomeKeyNotification with the
receiving object to the default notification center.

Recordsthewindow’s new status asthe main window. This
method posts the notification
NSWindowDidBecomeMainNatification with the
receiving object to the default notification center.

Returns whether the receiving window object can be the
key window.

Returns whether the receiving window object can be the
main window.

Returns whether deactivation hides the window.

Returns whether the receiving window object is the key
window.

Returns whether the receiving window object isthe main
window.

OpenStep Specification—10/19/94

—(BOOL)isMiniaturized

— (BOOL)isVisible

—(int)level
— (void)makeK eyAndOrder Front: (id)sender

— (void)makeK eyWindow

— (voidymakeM ainWindow

— (void)orderBack: (id)sender
— (void)or der Front: (id)sender

— (void)order FrontRegar dless

— (void)or der Out: (id)sender

Returns whether the window is hidden (and the
miniwindow displayed).

Returnswhether thewindow object isinthescreenlist (and
thusvisible).

Returns the current window level.

Makes the receiving window object the key window and
bringsit forward.

M akes the receiving window object the key window.
Makes the receiving window object the main window.
Puts the window object at the back of itstier.

Puts the window object at the front of itstier.

Puts the window object at the front even if the application
isinactive. If the window is currently miniaturized, this
method posts the notification
NSWindowDidDeminiaturizeNotification with the
window object to the default notification center.

Removes the window object from the screen list.

— (void)or der Window: (NSWindowOrderingM ode)place

relativeTo: (int)other\Win

— (void)resignK eyWindow

— (void)resignM ainWindow

— (void)setHidesOnDeactivate: (BOOL)flag
— (void)setL evel:(int)newLevel

OpenStep Specification—10/19/94

Repositionsthewindow object in the screenlistin position
place relative to another window. If the window is
currently miniaturized, this method posts the
NSWindowDidDeminiaturizeNotification notification
with that window object to the default notification
center.

Records that the window object is no longer the key
window. This method posts the naotification
NSWindowDidResignKeyNatification with the
receiving object to the default notification center.

Records that the window object is no longer the main
window. This method posts the notification
NSWindowDidResignMainNatification with the
receiving object to the default notification center.

Sets whether deactivation hides the window.

Resets the window level to newLevel.

Classes: NSWindow 1-231

Moving and Resizing the Window

— (NSPoint)cascadeTopL eftFromPoint: (N SPoint)topLeftPoint

— (void)center

— (NSRect)constrainFrameRect: (NSRect)frameRect
toScreen: (NSScreen *)screen

— (NSRect)frame

— (NSSize)minSize

— (NSSizeymaxSize

— (void)setContentSize: (NSSize)aSize

— (void)setFrame: (NSRect)frameRect
display:(BOOL)flag

— (void)setFrameOrigin: (NSPoint)aPoint
— (void)setFrameTopL eftPoint: (N SPoint)aPoint

— (void)setMinSize: (NSSize)aSze
— (void)setM axSize: (NSSize)aS ze

Converting Coordinates

— (NSPoint)convertBaseToScr een: (N SPoint)aPoint

— (NSPoint)conver t ScreenToBase: (N SPoint)aPoint

1-232 Chapter 1: Application Kit

When successively invoked, tiles windows by offsetting
them dlightly to the right and down from the previous
window. Returns the top left point of the placed
window, which istypically used for topLeftPoint in the
next invocation. If you specify (0,0), placesthewindow
asis, and returnsiits top left point.

Centers the window on the screen.

Constrains the window’s frame rectangle frameRect to
screen. Returns the frame rectangle.

Returns the window’s frame rectangle
Returns the window’s minimum size.
Returns the window’s maximum size
Resizes the window’s content areato aSze.

Moves and/or resizes the window frame to frameRect. flag
determines whether the window is displayed. This
method posts the NSWindowDidResi zeNatification
notification with the receiving object to the default
notification center.

Moves the window by changing its frame origin to aPoint.

Moves the window by changing its top-left corner to
aPoint.

Sets the window’s minimum size.

Sets the window’s maximum size.

Converts aPoint from base to screen coordinates.

Converts aPoint from screen to base coordinates.

OpenStep Specification—10/19/94

Managing the Display
— (void)display
— (void)disableFlushWindow
— (void)display! fNeeded
— (void)enableFlushwindow
— (void)flushwindow
— (void)flushwindow! fNeeded
— (BOOL)isAutodisplay

— (BOOL)isFlushwWindowDisabled
— (void)setAutodisplay:(BOOL)flag

— (void)setViewsNeedDisplay: (BOOL)flag

— (void)update

— (void)useOptimizedDrawing: (BOOL)flag
— (BOOL)viewsNeedDisplay

Screens and Window Depths
+ (NSWindowDepth)defaultDepthL imit
—(BOOL)canStoreColor
— (NSScreen *)deepest Screen
— (NSWindowDepth)depthL imit
— (BOOL)hasDynamicDepthL imit
— (NSScreen *)screen
— (void)setDepthLimit: (NSWindowDepth)limit
— (void)setDynamicDepthL imit: (BOOL)flag

OpenStep Specification—10/19/94

Displays all the window's views.

Disables flushing for a buffered window.

Displays al the window’s views that need to be redrawn.
Enables flushing for a buffered window.

Flushes the window’s buffer to the screen.

Conditionaly flushes the window’s buffer to the screen.

Returns whether the window displays all views requiring
redrawing when update is invoked.

Returns whether flushing is disabled.

Sets whether the window displays al views requiring
redrawing when update isinvoked.

Sets whether some views of the receiving window object
should be redrawn.

Update's the window's display and cursor rectangles. This
method is invoked after every event. When it
successfully completes, it posts the
NSWindowDidUpdateNotification notification.

Setswhether the window’ s views should optimize drawing.

Returns whether some views of the receiving NSWindow
object should be redrawn.

Returns the default depth limit for all windows.
Returnswhether the window is deep enough to store colors.
Returns the deepest screen that the window is on.

Returns the window’s depth limit.

Returns whether the depth limit depends on the screen.
Returns the screen that (most of) the window is on.

Sets the window’s depth limit to limit

Sets whether the depth limit will depend on the screen.

Classes: NSWindow 1-233

Cursor Management
— (BOOL)ar eCur sor RectsEnabled
— (void)disableCur sor Rects
— (void)discardCur sor Rects

— (void)enableCur sor Rects

Returns whether cursor rectangles are enabled.
Disables all cursor rectanglesin the window object.
Removes all cursor rectangles in the window object.

Enables cursor rectangles in the window object.

— (void)invalidateCur sor Rectskor View: (NSView *)aView

— (void)resetCur sor Rects

Handling User Actions and Events

— (void)close

— (void)deminiaturize:(id)sender
— (BOOL)isDocumentEdited
—(BOOL)isReleasedWhenClosed

— (void)miniaturize: (id)sender

— (void)per formClose: (id)sender

— (void)performMiniaturize: (id)sender

— (int)resizeFlags

— (void)setDocumentEdited: (BOOL)flag

— (void)setReleasedWhenClosed: (BOOL)flag

Aiding Event Handling
— (BOOL)acceptsM ouseM ovedEvents

— (NSEvent *)currentEvent

1-234 Chapter 1: Application Kit

Marks cursor rectanglesinvalid for aview.

Resets cursor rectangles for the window object.

Closes the window. When this method begins, it posts the
notification NSWindowWill CloseNotification with the
receiving object to the default notification center.

Hides the miniwindow and redisplays the window.
Returns whether the window’s document has been edited.

Returns whether the window object is released wheniit is
closed.

Hides the window and displays its miniwindow. When this
method begins, it posts the notification
NSWindowWillMiniaturizeNotification with the
receiving object to the default notification center. When
it completes successfully, it posts
NSwindowDidMiniaturizeNotification.

Simulates user clicking the close button.

Simulates user clicking the miniaturize button.
Returns the event modifier flags during resizing.

Sets whether the window’s document has been edited.

Sets whether closing the window object also releasesiit.

Returns whether the NSWindow accepts mouse-moved
events.

Returns the current event object for the application.

OpenStep Specification—10/19/94

— (void)discar dEventsM atchingM ask:: (unsigned int)mask
beforeEvent: (NSEvent *)lastEvent Discards any events in the event queue that have atype
indicated by bitmap mask until the method encounters
the event lastEvent.

— (NSResponder *)fir stResponder Returns the first responder to user events.
— (void)keyDown: (NSEvent *)theEvent Handles key-down events.

— (BOOL)makeFirstResponder : (NSResponder *)aResponder
Makes aResponder the first responder to user events.

— (NSPoint)ymouseL ocationOutsideOfEventStream Provides current location of the cursor.

— (NSEvent *)nextEventM atchingM ask: (unsigned int)mask
Returns the next event object for the application that
matches the events indicated by event mask mask.

— (NSEvent *)nextEventM atchingM ask: (unsigned int)mask

untilDate: (NSDate *)expiration Returns the next event object for the application that
inM ode: (NSString *)mode matches the events indicated by event mask mask, and
dequeue: (BOOL)degFlag that occurs before time expiration; until expiration, the

run loop runs in mode.

— (void)postEvent: (NSEvent *)event
atStart:(BOOL)flag Post an event for the application; if atSart is YES, the
event goes to the beginning of the event queue.

— (void)setAcceptsM ouseM ovedEvents: (BOOL)flag
Sets whether the NSWindow accepts mouse-moved events.

— (void)sendEvent: (NSEvent *)theEvent Dispatches mouse and keyboard events. If thismethod is
dispatching awindow exposed event, it posts the
NSWindowDidExposeNotification notificationwiththe
receiving object and, in the notification’s dictionary, a
rectangle describing the exposed area (with the key
NSExposedRect) to the default notification center. If it
is dispatching a screen changed event, it posts
NSWindowDidChangeScreenNotification with the
receiving object. If it is dispatching a window moved
event, it posts NSWindowDidM oveNotification.

— (BOOL)tryToPerform:(SEL)anAction Aidsin dispatching action messages (anAction) to
with: (id)anObject anObject.
— (BOOL)wor kswhenM odal Override to return whether the window object accepts

events when amodal panel isbeing run. Default is NO.

OpenStep Specification—10/19/94 Classes: NSWindow 1-235

Dragging

— (void)dr agl mage: (NSImage *)anlmage Initiates an image-dragging session. NSView invokesthis
at: (NSPoint)baselL ocation method inside its implementation of mouseDown:.
offset: (NSSize)initial Offset
event: (NSEvent *)event
pasteboard: (NSPasteboard *)pboard
sour ce: (id)sourceObject
slideBack:(BOOL)dideFlag

— (void)register For Dragged Types. (NSArray *)newTypes
Registers the NSPasteboard types (newTypes) that the
window object accepts in an image-dragging session.

— (void)unregister DraggedTypes Unregisters the window object as arecipient of dragged
images.

Services and Windows Menu Support

— (BOOL)isExcludedFromWindowsM enu Returns whether the receiving window object is omitted
from the Windows menu.

— (void)setExcludedFromWindowsM enu: (BOOL)flag
Sets whether the receiving window object is omitted from
the Windows menu.

— (id)validRequestor For SendType: (NSString *)sendType
returnType: (NSString *)returnType Returns whether the window can respond to a service with
send and receive types sendType and returnType.

Saving and Restoring the Frame

+ (void)removeFrameUsingName: (NSString *)name
Removes the named frame rectangle from the system
defaults.

— (NSString *)frameAutosaveName Returns the name that’s used to autosave the frame
rectangle as a system default.

— (void)saveFrameUsingName: (NSString *)name Saves the frame rectangle as a system defaullt.

— (BOOL)setFrameAutosaveName: (NSString *)name
Setsthe namethat’s used to autosave the framerectangle as
a system defaullt.

— (void)setFrameFromString: (NSString *)string Sets the frame rectangle from string, which encodes the
position and dimensions of the frame rectangle and the
position and dimensions of the screen.

1-236 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (BOOL)setFrameUsingName: (NSString *)name
— (NSString *)stringWithSavedFrame

Printing and PostScript
— (NSData *)dataWithEPSI nsideRect: (NSRect)rect

— (void)fax: (id)sender

— (void)print:(id)sender

Assigning a Delegate
—(id)delegate
— (void)setDelegate: (id)anObject

Implemented by the Delegate
— (BOOL)windowsShouldClose: (id)sender

— (NSSize)windowWillResi ze: (NSWindow *)sender
toSize: (NSSize)frameSize

Sets the frame rectangle from the named defaullt.

Returns a string encoding the position and dimensions of
the frame rectangle and the position and dimensions of
the screen.

Returns the encapsul ated PostScript inside rect as a data
object.

Faxes all the window’s views.

Prints al the window’s views.

Returns the window object’s delegate.
Makes anObject the window object’s del egate.

Notifies delegate that the window is about to close.

L ets delegate constrain resizing to frameSze.

— (idywindowWillRetur nFieldEditor : (NSWindow *)sender

toObject:(id)client

L ets delegate provide another text object for field editor.

— (void)windowDidBecomeK ey: (NSNotification *)aNotification

Sent by the default notification center to notify the delegate
that the window is the key window. aNotification is
always NSwWindowDidBecomeKeyNotification. If the
delegate implements this method, it’'s automatically
registered to receive this notification.

— (void)windowDidBecomeM ain: (NSNoatification *)aNotification

OpenStep Specification—10/19/94

Sent by the default notification center to notify the delegate
that the window is the main window. aNotification is
always NSWindowDidBecomeMainNatification. If the
delegate implements this method, it's automatically
registered to receive this notification.

Classes: NSWindow 1-237

— (void)windowDidChangeScr een: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window changed screens. aNotification is
aways NSWindowDidChangeScreenNoatification. If
the delegate implements this method, it's automatically
registered to receive this notification.

— (void)windowDidDeminiaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window was restored to screen. aNotification is
always NSWindowDidDeminiaturizeNotification. If
the delegate implements this method, it's automatically
registered to receive this notification.

— (void)windowDidExpose: (NSNatification *)aNotification
Sent by the default notification center to notify the delegate
that the window was exposed. aNatification is always
NSWindowDidExposeNatification. If the delegate
implementsthismethod, it'sautomatically registered to
receive this notification.

— (void)windowDidMiniaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window was miniaturized. aNotification is
aways NSWindowDidMiniaturizeNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (void)windowDidM ove: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window did move. aNotification is always
NSWindowDidMoveNatification. If the delegate
implementsthismethod, it’'sautomatically registered to
receive this notification.

— (void)windowDidResignK ey: (NSNatification *)aNotification
Sent by the default notification center to notify the delegate
that the window isn’t the key window. aNotification is
always NSWindowDidResignKeyNoatification. If the
delegate implements this method, it’'s automatically
registered to receive this notification.

— (void)windowDidResignM ain: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window isn’t the main window. aNotification is
aways NSWindowDidResignMainNatification. If the
delegate implements this method, it’'s automatically
registered to receive this notification.

1-238 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)windowDidResize: (NSNatification * JaNotification
Sent by the default notification center to notify the delegate
that the window was resized. aNotification is always
NSWindowDidResizeNatification. If the delegate
implementsthismethod, it’sautomatically registered to
receive this notification.

— (void)windowDidUpdate: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window was updated. aNotification is always
NSWindowDidUpdateNotification. If the delegate
implementsthismethod, it’'sautomatically registered to
receive this notification.

— (void)windowWillClose: (NSNoatification *)aNotification
Sent by the default notification center to notify the delegate
that the window will close. aNatification is aways
NSWindowWillCloseNoatification. If the delegate
implementsthismethod, it'sautomatically registered to
receive this notification.

— (void)windowWillMiniaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window will be miniaturized. aNotification is
aways NSWindowWillMiniaturizeNatification. If the
delegate implements this method, it’s automatically
registered to receive this notification.

— (void)windowWillM ove: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window will move. aNatification is always
NSWindowWillMoveNoatification. If the delegate
implementsthismethod, it'sautomatically registered to
receive this notification.

OpenStep Specification—10/19/94 Classes: NSWindow 1-239

NSWorkspace

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSWorkspace.h

Class Description
An NSWorkspace object responds to application requests to perform avariety of services:
» Opening, manipulating, and obtaining information about files and devices
» Tracking changes to the file system, devices, and the user database
« Launching applications
» Miscellaneous services such as animating an image and requesting additional time before power off

An NSWorkspace object is made available through the sharedWor kspace method. For example, the following
statement uses an NSWorkspace object to request that afile be opened in the Edit application:

[[NSWorkspace sharedWorkspace] openFile:@"/Myfiles/README" withApplication:@"Edit"];

Creating a Workspace

+ (NSWorkspace *)sharedWor kspace Returns a shared workspace.
Opening Files
— (BOOL)openFile: (NSString *)full Path Instructs Workspace Manager to open the file specified by

full Path using the default application for its type;
returns Y ESiif file was successfully opened and NO

otherwise.

— (BOOL)openFile: (NSString *)full Path Instructs Workspace Manager to open the file specified by
fromlmage: (NSImage *)anlmage full Path using the default application for itstype. To
at: (NSPoint)point provide animation prior to the open, anlmage should
inView: (NSView *)aView containthefile’'sicon, anditsimage should bedisplayed

at point, using aView's coordinates. Returns Y ESiif file
was successfully opened and NO otherwise.

1-240 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (BOOL)openFile: (NSString *)full Path I nstructs Workspace Manager to open the file specified by
withApplication: (NSString *)appName full Path using the appName application; returns YES if
file was successfully opened and NO otherwise.

— (BOOL)openFile: (NSString *)full Path Instructs Workspace Manager to open the file specified by
withApplication: (NSString *)appName fullPath using the appName application where flag
andDeactivate: (BOOL)flag indicatesif sending application should be deactivated

before the request is sent; returns YES if filewas
successfully opened and NO otherwise.

— (BOOL)openTempFile: (NSString *)full Path Instructs Workspace Manager to open the temporary file
specified by full Path using the default application for its
type; returns YES if file was successfully opened and

NO otherwise.
Manipulating Files
— (BOOL)performFileOper ation: (NSString *)operation
sour ce: (NSString *)source Requests the Workspace Manager to perform afile
destination: (NSString *)destination operation on a set of files in the source directory
files:(NSArray *)files specifying the destination directory if needed using tag
tag:(int *)tag as an identifier for asynchronous operations; returns

YESif operation succeeded and NO otherwise.

— (BOOL)sdlectFile: (NSString *)full Path
inFileViewer RootedAtPath: (NSString *)rootFullpath
I nstructs Workspace M anager to select the file specified by
full Path opening a new file viewer if a path is specified
by rootFullpath; returns Y ESiif file was successfully
selected and NO otherwise.

Requesting Information about Files

— (NSString *)fullPathFor Application: (NSString *)appName
Returns the full path for the application appName.

— (BOOL)getFileSysteml nfoFor Path: (NSString *)full Path

isRemovable: (BOOL *)removableFlag Describes the file system at fullPath in description and
isWritable:(BOOL *)writableFlag fileSystemType, setsthe Flags appropriately, and returns
isUnmountable: (BOOL *)unmountableFlag YESif fullPath isafile system mount point, or NO if it
description: (NSString **)description isn't.

type: (NSString **)fileSystemType

OpenStep Specification—10/19/94 Classes: NSWorkspace 1-241

— (BOOL)getI nfoFor File: (NSString *)full Path Retrieves information about the file specified by full Path,
application: (NSString **)appName sets appName to the application the Workspace
type: (NSString **)type Manager would useto open full Path, setstypeto avalue
or file name extension indicating the file's type, and
returns Y ES upon success and NO otherwise.

— (NSImage *)iconFor File: (NSString *)full Path Returns an NSImage with theicon for the single file
specified by full Path.

- (NSImage *)iconFor Files:(NSArray *)pathArray Returns an NSImage with the icon for the files specified in
pathArray, an array of NSStrings. If pathArray specifies
onefile, itsiconisreturned. If pathArray specifiesmore
than onefile, anicon representing the multiple selection

isreturned.
— (NSImage *)iconFor FileType: (NSString *)fileType Returns an NSImage theicon for the file type specified by
fileType.
Tracking Changes to the File System
— (BOOL)fileSystemChanged Returns whether a change to the file system has been

registered with a noteFileSystemChanged message
since the last fileSystemChanged message.

— (void)noteFileSystemChanged Informs Workspace Manager that the file system has
changed.

Updating Registered Services and File Types

— (void)findApplications Instructs Workspace Manager to examine all applications
inthe normal placesand updateitsrecords of registered
services and file types.

Launching and Manipulating Applications
— (void)hideOther Applications Hides al applications other than the sender.

—(BOOL)launchApplication: (NSString *)appName | nstructs Workspace Manager to launch the application
appName and returns Y ES if application was
successfully launched and NO otherwise.

— (BOOL)launchApplication: (NSString *)appName Instructs Workspace Manager to launch the application
showl con: (BOOL)showlcon appName displaying the application’s icon if showlcon
autolaunch: (BOOL)autolaunch is YES and using the dock autolaunching defaults if

autolaunch is YES; returns YES if application was
successfully launched and NO otherwise.

1-242 Chapter 1: Application Kit OpenStep Specification—10/19/94

Unmounting a Device

— (BOOL)unmountAndEjectDeviceAtPath: (NSString *)path
Unmounts and gjects the device at path and returns YES if
unmount succeeded and NO otherwise.

Tracking Status Changes for Devices

— (void)check For RemovableM edia Causes the Workspace Manager to poll the system’s drives
for any disks that have been inserted but not yet
mounted. Asks the Workspace Manager to mount the
disk asynchronously and returns immediately.

— (NSArray *)mountNewRemovableM edia Causes the Workspace Manager to poll the system’s drives
for any disks that have been inserted but not yet
mounted, waits until the new disks have been mounted,
andreturnsalist of full pathnamesto all newly mounted
disks.

— (NSArray *)mountedRemovableM edia Returns alist of the pathnames of al currently mounted
removable disks.

Notification Center
— (NSNotificationCenter *)notificationCenter Returns the notification center for WorkSpace

notifications.

Tracking Changes to the User Defaults Database

— (void)noteUser DefaultsChanged Informs Workspace Manager that the defaults database has
changed.
— (BOOL)user DefaultsChanged Returnswhether achange to the defaults database has been

registered with a noteUser DefaultsChanged message
since the last user DefaultsChanged message.

Animating an Image

— (void)slidel mage: (NSImage *)image I nstructs Workspace Manager to animate asliding image of
from: (N SPoint)fromPoint image from fromPoint to toPoint, specified in screen
to: (NSPoint)toPoint coordinates.

OpenStep Specification—10/19/94 Classes: NSWorkspace 1-243

Requesting Additional Time before Power Off or Logout

— (int)extendPower OffBy: (int)requested Requests more time before the power goes off or the user
logs out; returns the granted number of additional
milliseconds.

1-244 Chapter 1. Application Kit OpenStep Specification—10/19/94

Protocols

NSChangeSpelling

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

An object in the responder chain that can correct a misspelled word implements this protocol. See the description
of the NSSpellChecker class for more information.

Changing Spelling

— (void)changeSpelling: (id)sender Implement to replace the sel ected word in the receiver with
acorrected version from the Spelling panel. This
message is sent by the NSSpell Checker instance to the
object whosetext isbeing checked. To get the corrected
spelling, the receiver asksthe sender for the string value
of its selected cell.

OpenStep Specification—10/19/94 Protocols: NSChangeSpelling 1-245

NSColorPickingCustom

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

Together with the NSCol orPickingDefault protocol, NSCol orPickingCustom provides away to add color pickers—
custom user interfaces for color selection—to an application's NSColorPanel. The NSCol orPickingDefault
protocol provides basic behavior for acolor picker. The NSColorPicker class adopts the NSColorPickingDefault
protocol. The easiest way to implement a color picker isto create a subclass of NSColorPicker and useit asabase
upon which to add the NSCol orPickingCustom protocol.

See also: NSColorPickingDefault, NSColorPicker (class)

Getting the Mode

—(int)currentM ode Returns the color picker’s current mode (or submode, if
applicable). The returned value should be unique to
your color picker. (NSColor Panel.h. defines unique
values for the standard color pickers used by the
Application Kit.)

— (BOOL)supportsM ode: (int)mode Returns YES if the receiver supports the specified picking
mode.

Getting the View

— (NSView *)provideNewView: (BOOL)firstRequest Returns the view containing the color picker’s user
interface. This message is sent to the color picker
whenever the color panel attemptsto display it; the
argument indicates whether thisis the first time the
message has been sent. If firstRequest is YES, the
method should perform any initialization required (such
aslazily loading anib file).

Setting the Current Color

— (void)setColor:(NSColor *)aColor Adjusts the color picker to make aColor the currently
selected color.

1-246 Chapter 1. Application Kit OpenStep Specification—10/19/94

NSColorPickingDefault

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

TheNSColorPickingDefault protocol, together with the NSCol orPickingCustom protocol, providesan interfacefor
adding color pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSCol orPickingCustom protocol
provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement your
own color picker isto create a subclass of NSColorPicker, implementing the NSCol orPickingCustom protocol in
that subclass. However, it’s possible to create a subclass of another class, such asNSView, and useit as abase upon
which to add the methods of both NSColorPickingDefault and NSCol orPickingCustom.

Color Picker Bundles

A class that implements the NSCol orPickingDefault and N SCol orPickingCustom protocols needs to be compiled
and linked in an application’s object file. However, your application need not explicitly create an instance of this
class. Instead, your application’sfile package should include adirectory named Color Picker s; within thisdirectory
you should place a directory MyPicker Class.bundle for each custom color picker your application implements.
This bundle should contain all resources required for your color picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each classfor which abundleisfound inthe Color Pickers
directory. The class name is assumed to be the bundle directory name minus the .bundle extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from amatrix of NSButtonCells. This protocol includes methods
for providing and manipulating the image that gets displayed on the button.

See also: NSColorPickingCustom, NSColorPicker (class), NSColorPanel (class)

OpenStep Specification—10/19/94 Protocols: NSColorPickingDefault 1-247

Initializing a Color Picker

— (id)initWithPicker M ask: (int)mask Initializes the receiver for the specified mask and color
color Panel: (NSColorPanel *)colorPanel panel. This method is sent by the NSColorPanel to all

implementors of the color picking protocols when the
application’s color panel isfirst initialized. If the color
picker responds to any of the modes represented in
mask, it should performitsinitialization (if desired) and
return self; otherwise it should do nothing and return
nil. However, a custom color picker can instead delay
initialization until it receives a provideNewView:

message.

Adding Button Images

— (void)insertNewButtonl mage: (NSImage *)newlmage
in:(NSButtonCell *)newButtonCell Sets newl mage as newButtonCell’s image. newButtonCell
isthe NSButtonCell object that lets the user choose the
picker from the color panel. This method should
perform application-specific manipul ation of theimage
before it’sinserted and displayed by the button cell.

— (NSImage *)provideNewButtonl mage Returnstheimage for the mode button that the user usesto
select this picker in the color panel. (Thisisthe same
image that the color panel uses as an argument when
sending the inser tNewButtonl mage:in: message.)

Setting the Mode

— (void)setM ode: (intymode Sets the color picker’s mode. This method isinvoked by
NSColorPanel's setM ode: method to ensure that the
color picker reflects the current mode. Most color
pickers have only one mode, and thus don't need to do
any work in this method. Others, like the standard
dliders picker, have multiple modes.

Using Color Lists

— (void)attachColorList:(NSColorList *)aColorList Attaches the given color list to the receiver, if itisn't
already displaying the list. This method is invoked
automatically by the NSColorPanel when its
attachColorList: method isinvoked. Since
NSColorPanel's list mode manages NSColorLists, this
method need only be implemented by a custom color
picker that manages NSColorLists itself.

1-248 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)detachColorList: (NSColorList *)aColorList Removes the given color list from the receiver, unless the
receiver isn't displaying thelist. Thismethod isinvoked
automatically by the NSColorPanel when its
detachColorList: method isinvoked. Since
NSColorPanel's list mode manages NSColorLists, this
method need only be implemented by a custom color
picker that manages NSColorLists itself.

Showing Opacity Controls

— (void)alphaControlAddedOr Removed: (id)sender Sent by the color panel when the opacity controlshave been
hidden or displayed. If the color picker hasits own
opacity controls, it should hide or display them,
depending on whether the sender’s showsAlpha
method returns NO or YES.

Responding to a Resized View

— (void)viewSizeChanged: (id)sender Sent when the color picker’s superview hasbeen resized in
away that might affect the color picker. sender isthe
NSColorPanel that contains the color picker.

OpenStep Specification—10/19/94 Protocols: NSColorPickingDefault 1-249

NSDraggingDestination

(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingDestination protocol declares methods that the destination (or recipient) of adragged image must
implement. The destination automatically receives NSDraggingDestination messages as an image enters, moves
around inside, and then exits or is released within the destination’s boundaries.

Note: Inthetext here and in the other dragging protocol descriptions, the term dragging session isthe entire
process during which an image is selected, dragged, released, and is absorbed or rejected by the destination. A
dragging operation is the action that the destination takesin absorbing the image when it's rel eased. The dragging
source isthe object that “owns’ the image that's being dragged. It's specified as an argument to the dragl mage: ...
message, sent to a NSWindow or NSView, that instigated the dragging session.

The Dragged Image

Theimage that’s dragged in an image-dragging session is an NSImage object that represents data that’s put on the
pasteboard. Although a dragging destination can access the NSImage (through a method described in the
NSDragginglnfo protocal), its primary concern is with the pasteboard data that the NSImage represents—the
dragging operation that a destination ultimately performsis on the pasteboard data, not on the image itself.

Valid Destinations

Dragging is avisual phenomenon. To be an image-dragging destination, an object must represent a portion of
screen real estate; thus, only NSWindows and NSViews can be destinations. Furthermore, you must announce the
destination-candidacy of an NSWindow or NSView by sending it aregister For Dragged Types. message. This
method, defined in both classes, registers the pasteboard types that the object will accept. During a dragging
session, a candidate destination will only receive NSDraggingDestination messages if the pasteboard types for
which it is registered matches a type that’s represented by the image that’s being dragged.

Although NSDraggingDestination is declared as a protocol,, the NSView and NSWindow subclassesthat you create
to adopt the protocol need only implement those methods that are pertinent. (The NSView and NSWindow classes
provide private implementationsfor all of the methods.) In addition, an NSWindow or its del egate may implement
these methods; the delegate’s implementation takes precedent.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports asingle argument: sender, the object that invoked the method.
Within its implementations of the NSDraggingDestination methods, the destination can send NSDragginginfo
messages to sender to get more information on the current dragging session.

1-250 Chapter 1: Application Kit OpenStep Specification—10/19/94

The Order of Destination Messages
The six NSDraggingDestination methods are invoked in adistinct order:

» Astheimageisdragged into the destination’s boundaries, the destination is sent a draggingEntered:
message.

« While the image remains within the destination, a series of draggingUpdated: messages are sent.

» If theimageis dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

* Whentheimageisreleased, it either slides back to its source (and breaks the sequence) or a
prepareFor DragOper ation: message is sent to the destination, depending on the value that was returned
by the most recent invocation of draggingEntered: or draggingUpdated:.

 If the prepareFor DragOper ation: message returned Y ES, a per formDragOper ation: message is sent.

» Finadly, if performDragOperation: returned Y ES, concludeDragOper ation: is sent.

Before the Image is Released

— (NSDragOperation)dr aggingEnter ed: (id <NSDragginglnfo>)sender
Invoked when the dragged image enters the destination.

— (NSDragOperation)draggingUpdated: (id <NSDraggingl nfo>)sender
Invoked periodically while theimageis over the
destination.
— (void)draggingExited: (id <NSDragginglnfo>)sender
Invoked when the dragged image exits the destination.

After the Image is Released

— (BOOL)prepareFor DragOper ation: (id <NSDraggingl nfo>)sender
Invoked when the image is released.

— (BOOL)performDragOper ation: (id <NSDraggingl nfo>)sender
Gives the destination an opportunity to perform the
dragging operation.

— (void)concludeDragOper ation: (id <NSDragginglnfo>)sender
Invoked when the dragging operation is compl ete.

OpenStep Specification—10/19/94 Protocols. NSDraggingDestination 1-251

NSDragginginfo

Adopted By: no OpenStep classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDragginglnfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol, an informal protocol of NSObject, for definitions of dragging terms). A view or
window first registers dragging types; it may then send NSDragginglnfo protocol messages while dragging occurs
to get details about that dragging session.

NSDragginglnfo methods are designed to be invoked from within an object’s implementation of the
NSDraggingDestination protocol methods. An object that conforms to NSDragginglnfo is passed as the argument
to each of the methods defined by NSDraggingDestination; NSDraggingl nfo messages should be sent to this
conforming object. The Application Kit supplies an NSDragginglnfo object automatically so that you never need
to create a class that implements this protocol.

Dragging-Session Information
— (NSWindow *)draggingDestinationWindow Returns the destination’s Window.

— (NSPoint)draggingL ocation Returns the current location of the cursor’s hot spot,
reckoned in the base coordinate system of the
destination object’s Window.

— (NSPasteboard *)draggingPasteboard Returns the Pasteboard that holds the dragged data.

— (int)dr aggingSequenceNumber Returns a number that uniquely identifies the dragging
session.

— (id)draggingSour ce Returns the source, or “owner,” of the dragged image.
Returnsnil if the sourceisn’t in the same application as
the destination.

— (NSDragOperation)dr aggingSour ceOper ationM ask
Returns the operation mask declared by the source.

Image Information

— (NSImage *)draggedl mage Returns the image object that's being dragged. Don’t
invokethis method after the user hasreleased theimage,
and don't release the object that this method returns.

1-252 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (NSPoint)draggedl magelL ocation Returns the current location of the dragged image’s origin.
The image moves in lockstep with the cursor (the
position of which is given by draggingL ocation) but
may be positioned at some offset. The point that’s
returned is reckoned in the base coordinate system of
the destination object’s Window.

Sliding the Image

— (void)slideDraggedl mageTo: (NSPoint)screenPoint

Slides the image to the given location in the screen
coordinate system. Thismethod should only beinvoked
after the user has released the image but beforeit's
removed from the screen.

OpenStep Specification—10/19/94 Protocols: NSDragginginfo 1-253

NSDraggingSource

(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocol Description

NSDraggingSource declares methodsthat can (or must) beimplemented by the source object in adragging session.
(See the NSDraggingDestination protocol for definitions of dragging terms.) This dragging sourceis specified as
an argument to the dragl mage: ... message, sent to a NSWindow or NSView, that instigated the dragging session.

Of the methods declared below, only the draggingSour ceOper ationM ask For L ocal: method must be
implemented. The other methods are invoked only if the dragging source implements them. All four methods are

invoked automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Querying the Source

— (NSDragOperation)dr aggingSour ceOper ationM ask For L ocal: (BOOL)isLocal

Returnsamask giving the operationsthat can be performed
on the dragged image's data.

— (BOOL)ignoreM odifier KeyswhileDr agging Returns YES if modifier keys should have no effect on the
type of operation performed.

Informing the Source

— (void)dr aggedl mage: (NSImage *)image Invoked when the dragged image is displayed but before it
beganAt: (NSPoint)screenPoint starts following the mouse.

— (void)dr aggedl mage: (NSImage *)image Invoked after the dragged image has been released and the
endedAt: (NSPoint)screenPoint dragging destination has been given achanceto operate.

deposited: (BOOL)didDeposit

1-254 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button allows
the user to accept aword that the spelling checker believesis misspelled. In order for this action to update the
“ignored words” list for the document being checked, the NSlgnoreMisspelledWords protocol must be
implemented.

This protocol is necessary because alist of ignored words is useful only if it pertains to the entire document being
checked, but the spelling checker (NSSpell Checker object) does not check the entire document for spelling at once.
The spelling checker returns as soon asit finds amisspelled word. Thus, it checks only a subset of the document at
any onetime. The user usually wants to check the entire document, and so usually several spelling checks are run
in succession until no misspelled words are found. This protocol allowsthe list of ignored words to be maintained
per-document, even though the spelling checks are not run per-document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling:, which should be implemented like
this:

- (void)ignoreSpelling: (id) sender

{

[[NSSpellChecker sharedSpellChecker] ignoreWord: [[sender selectedCell] stringValuel
inSpellDocumentWithTag: myDocumentTag] ;

}

The second argument to the NSSpell Checker method ignoreWor d:inSpellDocumentWithTag: isatag that the
NSSpellChecker can use to distinguish the documents being checked. (See the discussion of “Matching a List of
Ignored Words With the Document It Belongs To” in the description of the NSSpell Checker class.) Once the
NSSpell Checker has away to distinguish the various documents, it can append new ignored words to the
appropriate list.

To make the ignored words feature useful, the application must store adocument’s ignored words list with the
document. See the NSSpell Checker class description for more information.

OpenStep Specification—10/19/94 Protocols: NSignoreMisspelledWords1-255

Identifying the Source

— (void)ignoreSpelling: (id)sender Implement to allow an application to ignore misspelled
words on adocument-by-document basis. Thismessage
is sent by the NSSpellChecker instance to the object
whose text is being checked. To inform the
NSSpell Checker that a particular spelling should be
ignored, the receiver asks the NSSpell Checker for the
string value of its selected cell. It then sends the
NSSpell Checker an
ignor eWor d:inSpellDocumentWithTag: message.

1-256 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSMenuActionResponder
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

Thisinformal protocol allows your application to update the enabled or disabled status of an NSMenuCell. It
declares only one method, validateCell:. By default, every time a user event occurs, NSMenu automatically
enables and disables each visible menu cell based on criteria described later in this specification. Implement
validateCell: in cases where you want to override NSMenu’'s default enabling scheme. Thisis described in more
detail later.

Therearetwo waysthat NSMenuCells can be enabled or disabled: Explicitly, by sending the setEnabled: message,
or automatically, as described below. NSMenuCells are updated automatically unless you send the message
setAutoenablesltems:NO to the NSMenu object. You should never mix the two. That is, never use setEnabled:
unless you have disabled the automatic updating.

Automatic Updating of NSMenuCells

Whenever auser event occurs, the NSMenu object updatesthe status of every visiblemenu cell. To updatethe status
of amenu cell, NSMenu triesto find the object that responds to the NSMenuCell’s action message. It searchesthe
following objects in the following order until it finds one that responds to the action message.

» the NSMenuCell’s target

 the key window’s first responder

» the key window’s delegate

» the main window’s first responder
« the main window’'s delegate

» the NSApplication object

» the NSApplication’s delegate

« the NSMenu's delegate

If none of these objects responds to the action message, the menu cell is disabled. If NSMenu finds an object that
responds to the action message, it then checks to see if that object responds to the validateCell: message (the
method defined in thisinformal protocol). If validateCell: is not implemented in that object, the menu cell is
enabled. If it isimplemented, the return value of validateCell: indicates whether the menu cell should be enabled
or disabled.

OpenStep Specification—10/19/94 Protocols: NSMenuActionResponder 1-257

For example, the NSText object implements the copy: method. If your application has a Copy menu cell that sends
the copy: action message to the first responder, that menu cell is automatically enabled any time an NSText object
isthe first responder of the key or main window. If you have an object that might become the first responder and
that object could allow users to select something that they aren’t allowed to copy, you can implement the
validateCell: method in that object. validateCell: can return NO if the forbidden items are selected and YES if
they aren’t. By implementing validateCell:, you can have the Copy menu item disabled even though its target
object implements the copy: method. If instead your object never permits copying, then you would simply not
implement copy: in that object, and the cell would be disabled automatically whenever the object isfirst responder.

If you send asetEnabled: messageto enable or disable amenu cell when the automatic updating isturned on, other
objects might reverse what you have done after another user event occurs. Using setEnabled:, you can never be
surethat amenu cell is enabled or disabled or will remain that way. If your application must use setEnabled:, you
must turn off the automatic enabling of menu cells (by sending setAutoEnablesl tems:NO to NSMenu) in order to
get predictable results.

Updating NSMenuCells

—(BOOL)validateCell:(id)aCell Implemented to override the default action of updating an
NSMenuCell. Return Y ES to enable the NSMenuCell,
NO to disableit.

1-258 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSNibAwaking

(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

Thisinformal protocol consists of a single method, awakeFromNib. It'simplemented to receive a notification
message that's sent after objects have been loaded from an Interface Builder archive.

When loadNibFile:owner: or arelated method loads an I nterface Builder archive into an application, each custom
object from the archiveisfirst initialized with an init message (initFrame: if the object isakind of View). Outlets
areinitialized viaany setVariable: methods that are available (where variable is the name of an instance variable).
(These methods are optional ; the Objective C run time system automatically initializes outlets.) Finally, after al the
objects are fully initialized, they each receive an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it's possible for asetVariable:
message to be sent to an object before its companion objects have been unarchived. For this reason, setVariable:
methods should not send messages to other objects in the archive. However, messages to other objects can safely
be sent from within awakeFromNib—by this point it's assured that all the objects are unarchived and fully
initialized.

Typically, awakeFromNib isimplemented for only one object in the archive, the controlling or “owner” object for
the other objects that are archived with it. For example, suppose that a nib file contained two Views that must be
positioned relative to each other at run time. Trying to position them when either one of the Viewsisinitialized (in
asetVariable: method) might fail, since the other View might not be unarchived and initialized yet. However, it can
be done in an awakeFromNib method:

- awakeFromNib

{

NSRect viewFrame;

[firstView getFrame:&viewFrame] ;

[secondView moveTo:viewFrame.origin.x + someVariable
:viewFrame.origin.y];

return self;

}

There's no default awakeFromNib method; an awakeFromNib messageis only sent if an object implementsit.
The Application Kit declares a prototype for this method, but doesn't implement it.

OpenStep Specification—10/19/94 Protocols. NSNibAwaking 1-259

Notification of Loading

— (void)awakeFromNib Implemented to prepare an object for service after it has
been loaded from an Interface Builder archive—a
so-called “nib file”. An awakeFromNib messageis
sent to each object loaded from the archive, but only if
it can respond to the message, and only after all the
objects in the archive have been loaded and initialized.
When an object receives an awakeFromNib message,
it's already guaranteed to have all its outlet instance
variables set. There's no default awakeFromNib
method.

1-260 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSServicesRequests
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

Thisinformal protocol consists of two methods, writeSelectionToPasteboar d:types: and
readSelectionFromPasteboard:. Thefirst isimplemented to provide data to a remote service, and the second to
receive any data the remote service might send back. Both respond to messages that are generated when the user
chooses a command from the Services menu.

Pasteboard Read/Write

— (BOOL)readSelectionFromPasteboar d: (NSPasteboard *)pboard
Implemented to replace the current selection (that is, the
text or objects that are currently selected) with data
from pboard.

— (BOOL)writeSelectionToPasteboar d: (NSPasteboard *)pboard
types: (NSArray *)types Implemented to write the current selection to pboard as
types data.

OpenStep Specification—10/19/94 Protocols: NSServicesRequests 1-261

Application Kit Functions

Rectangle Drawing Functions

Optimize Drawing

void NSEr aseRect(NSRect aRect) Erases the rectangle by filling it with white. (This does not
alter the current drawing color.)

void NSHighlightRect(NSRect aRect) Highlights or unhighlights a rectangle by switching light
gray for white and vice versa, when drawing on the
screen. If not drawing to the screen, the rectangleis
filled with light gray.

void NSRectClip(NSRect aRect) Intersects the current clipping path with the rectangle
aRect, to determine a new clipping path.
void NSRectClipList(const NSRect *rects, Takesan array of count number of rectanglesand intersects
int count) the current clipping path with each of them. Thus, the

new clipping path is the graphic intersection of all the
rectangles and the original clipping path.

void NSRectFill (NSRect aRect) Fills the rectangle referred to by aRect with the current
color.

void NSRectFillList(const NSRect *rects,
int count) Fillsan array of count rectangles with the current color.

void NSRectFillListWithGrays(const NSRect *rects,
const float * grays, int count) Fills each rectangle in the array rects with the gray whose
valueisstored at the corresponding location in the array
grays. Both arrays must be count elements long. Avoid
rectangles that overlap, because the order in which
they’ll befilled can’t be guaranteed.

Draw a Bordered Rectangle

void NSDrawButton(NSRect aRect, Draws the bordered light gray rectangle whose appearance
NSRect clipRect) signifies a button in the OpenStep user interface. aRect
is the bounds for the button, but only the area where
aRect intersects clipRect is drawn.

1-262 Chapter 1: Application Kit OpenStep Specification—10/19/94

void NSDrawGrayBezel (NSRect aRect,
NSRect clipRect)

void NSDrawGroove(NSRect aRect,
NSRect clipRect)

NSRect NSDrawTiledRects(NSRect boundsRect,
NSRect clipRect,
const NSRectEdge * sides,
const float *grays,
int count)

void NSDrawW hiteBezel (NSRect aRect,
NSRect clipRect)

void NSFrameRect(NSRect aRect)

void NSFrameRectWithWidth(NSRect aRect,
float frameWidth)

Draws a bordered light gray rectangle with the appearance
of a pushed-in button, clipped by intersecting with
clipRect.

Draws alight gray rectangle whose border is a groove,
giving the appearance of atypical box in the OpenStep
user interface.

Draws an unfilled rectangle, clipped by clipRect, whose
border is defined by the parallel arrays sides and grays,
both of length count. Each element of sides specifiesan
edge of the rectangle, which is drawn with awidth of
1.0using thecorresponding gray level fromgrays. If the
edgesarray containsrecurrences of the same edge, each
isinset within the previous edge.

Draws awhite rectangle with a bezeled border. Only the
area that intersects clipRect is drawn.

Drawsaframe of width 1.0 around theinside of arectangle,
using the current color.

Draws aframe of width frameWdth around the inside of a
rectangle, using the current color.

Color Functions

Get Information About Color Space and Window Depth

const NSWindowDepth * NSAvailablewWindowDepths(void)

Returns a zero-terminated list of available window depths.

NSwWindowDepth NSBestDepth(NSString * color Space,

int bitsPer Sample, int bitsPerPixel,
BOOL planar, BOOL *exactMatch)

Returns awindow depth deep enough for the given number
of colors, bits per sample, bits per pixel, and if planar.
Upon return, the variable pointed to by exactMatch is
YESif the window depth can accommodate all of the
values given for all of the parameters, NO if not.

int NSBitsPer Pixel FromDepth(NSWindowDepth depth)

OpenStep Specification—10/19/94

Returns the number of bits per pixel for the given window
depth.

Application Kit Functions 1-263

int NSBitsPer SampleFromDepth(NSWindowDepth depth)
Returns the number of bits per sample (bits per pixel in
each color component) for the given window depth.

NSString * NSColor SpaceFromDepth(NSWindowDepth depth)
Returns the name of the color space that matchesthe given
window depth.

int NSNumber Of Color Components(NSString * color SoaceName)
Returns the number of color components in the named
color space.

BOOL NSPlanar FromDepth(NSWindowDepth depth)
Returns YES if the given window depth is planar, NO if

not.
Read the Color at a Screen Position
NSColor * NSReadPixel (NSPaint |ocation) Returns the color of the pixel at the given location, which
must be specified in the current view’s coordinate
system.
Text Functions
Filter Characters Entered into a Text Object
unsigned short NSEditor Filter (unsigned short theChar,
int flags, Identical to NSFieldFilter () except that it passes on values
NSStringEncoding theEncoding) corresponding to Return, Tab, and Shift-Tab directly to
the NSText object.
unsigned short NSFieldFilter (unsigned short theChar,
int flags, Checks each character the user typesinto an NSText
NSStringEncoding theEncoding) object’s text, alowing the user to move the selection

among text fields by pressing Return, Tab, or Shift-Tab.
Alphanumeric characters are passed to the NSText
object for display. Thefunction returnseither the ASCI|
value of the character typed, O (for illegal characters or
ones entered while a Command key is held down), or a
constant that the Text object interprets as a movement
command.

1-264 Chapter 1. Application Kit OpenStep Specification—10/19/94

Calculate or Draw a Line of Text (in Text Object)

int NSDrawALine(id self,
NSLaylnfo *laylnfo)

int NSScanAL ine(id salf,
NSLaylnfo *laylnfo)

Draws aline of text, using the global variables set by
NSScanALine&(). The return value has no significance.

Determinesthe placement of charactersin aline of text. self
refersto the NSText object calling the function, and
*|aylnfo isan NSLaylnfo struct. The function returns 1
if aword's length exceeds the width of aline and the
NSText'scharWrapinstancevariableisNO. Otherwise,
it returns 0.

Calculate Font Ascender, Descender, and Line Height (in Text Object)

void NSTextFontlI nfo(id fid,
float * ascender, float * descender,
float *lineHeight)

Access Ext Object’s Word Tables

Calculates, and returns by reference, the ascender,
descender, and line height values for the NSFont given
by font.

NSData* NSDatawithWor dTable(const unsigned char * smartLeft,

const unsigned char * smartRight,
const unsigned char * char Classes,
const NSFSM *wrapBreaks,

int wrapBreaksCount,

const NSFSM * clickBreaks,

int clickBreaksCount,

BOOL charWrap)

void NSReadWor dTable(NSZone * zone,
NSData * data,
unsigned char ** smartLeft,
unsigned char **smartRight,
unsigned char ** char Classes,
NSFSM **wrapBreaks,
int *wrapBreaksCount,
NSFSM **clickBreaks,
int * clickBreaksCount,
BOOL *charWrap)

OpenStep Specification—10/19/94

Given pointers to word table structures, records the
structures in the returned NSData object. The
arguments are similar to those of
NSReadWordTable().

Given data, creates word tablesin the memory zone
specified by zone, returning (in the subsequent
arguments) pointers to the various tables. The integer
pointer arguments return the length of the preceding
array, and charWrap indicates whether words whose
length exceeds the NSText object’s line length should
be wrapped on a character-by-character basis.

Application Kit Functions 1-265

Array Allocation Functions for Use by the NSText Class

NSTextChunk *NSChunk Copy(NSTextChunk *pc,
NSTextChunk *dpc)

NSTextChunk *NSChunk Grow(NSTextChunk * pc,
int newUsed)

NSTextChunk *NSChunkM alloc(int growBy,
int initUsed)

NSTextChunk *NSChunkRealloc(NSTextChunk * pc)

Copiesthe array pcto the array dpc and returns a pointer to
the copy.

Increases the array identified by the pointer pc to a size of
newUsed bytes.

Allocatesinitial memory for a structure whosefirst field is
an NSTextChunk structure and whose subsequent field
isavariable-sized array. The amount of memory
allocated isequal to initUsed. If initUsed is O, growBy
bytes are allocated. growBY specifies how much
memory should be allocated when the chunk grows.

Increases the amount of memory available for the array
identified by the pointer pc, asdetermined by thearray’s
NSTextChunk.

NSTextChunk *NSChunkZ oneCopy(NSTextChunk * pc,

NSTextChunk *dpc,
NSZone * zone)

Like NSChunkCopy(), but uses the specified zone of
memory.

NSTextChunk *NSChunkZoneGrow(NSTextChunk * pc,

int newUsed,
NSZone * zone)

NSTextChunk * NSChunkZoneM alloc(int growBY,
int initUsed,
NSZone * zone)

Like NSChunkGrow(), but uses the specified zone of
memory.

Like NSChunkMalloc(), but uses the specified zone of
memory.

NSTextChunk *NSChunkZ oneRealloc(NSTextChunk * pc,

NSZone * zone)

Like NSChunkRealloc(), but uses the specified zone of
memory.

Imaging Functions

Copy an image

void NSCopyBitmapFromGState(int srcGstate,
NSRect srcRect,
NSRect destRect)

1-266 Chapter 1. Application Kit

Copies the pixels in the rectangle srcRect to the rectangle
destRect. The source rectangle is defined in the
graphics state designated by srcGstate, and the
destination is defined in the current graphics state.

OpenStep Specification—10/19/94

void NSCopyBits(int srcGstate,
NSRect srcRect,
NSPoint destPoint)

Render Bitmap Images

void NSDrawBitmap(NSRect rect,
int pixelsWide,
int pixelsHigh,
int bitsPer Sample,
int samplesPerPixel,
int bitsPerPixel,
int bytesPer Row,
BOOL isPlanar,
BOOL hasAlpha,
NSString * col or SpaceName,

const unsigned char *const data[5])

Copies the pixelsin the rectangle srcRect to the location
destPoint. The source rectangle is defined in the current
graphics state if srcGstate is NSNull Object; otherwise,
in the graphics state designated by srcGstate. The
destPoint destination is defined in the current graphics
state.

Renders an image from a bitmap. rect isthe rectangle in
which theimage is drawn, and data is the bitmap data,
stored in up to 5 channels unlessisPlanar isNO (in
which case the channels are interleaved in asingle

array).

Attention Panel Functions

Create an Attention Panel without Running It Yet

id NSGetAlertPanel (NSString *title,

NSString * msg,

NSString * defaultButton,
NSString * alternateButton,
NSString * other Button, ...)

OpenStep Specification—10/19/94

Returns an NSPanel object that you can use in amodal

session. Unlike NSRunAlertPanel(), no button is
displayed if defaultButton is NULL.

Application Kit Functions 1-267

Create and Run an Attention Panel

int NSRunAlertPanel (NSString *title, Creates an attention panel that aerts the user to some
NSString * msg, consequence of arequested action, and runsthe panel in
NSString * defaultButton, amodal event loop. title isthe panel’stitle (by default,
NSString * alternateButton, “Alert”); msg isthe printf()-style message that's
NSString * otherButton, ...) displayedinthepanel; defaultButton (by default, “ OK™)

isthetitlefor the main button, also activated by Return;
alter nateButton and other Button give two more
choices, which are displayed only if the corresponding
argument isn't NULL. The trailing arguments are a
variable number of printf()-style arguments to msg.

int NSRunL ocalizedAlertPanel (NSString *table, Similar to NSRunAlertPanel (), but preferred, as it makes
NSString *title, use of OpenStep's localization feature for languages of
NSString * msg, different countries.
NSString * defaultButton,
NSString * alternateButton,
NSString * otherButton, ...)

Release an Attention Panel

void NSReleaseAlertPanel (id panel) Releases the specified aert panel.

Services Menu Functions

Determine Whether an Item Is Included in Services Menus

int NSSet ShowsSer vicesM enul tem(NSString *item,

BOOL showService) Determines (based on the value of showService) whether
the item command will be included in other
applications’ Services menus. item describes a service
provided by this application, and should be the same
string entered in the “Menu Item:” field of the services
file. The function returns O upon success.

BOOL NSShowsServicesM enultem(NSString * item)
Returns YES if item is currently shown in Services menus.

1-268 Chapter 1. Application Kit OpenStep Specification—10/19/94

Programmatically Invoke a Service

BOOL NSPerformService(NSString *item, Invokes a service found in the application’s Services menu.
NSPasteboard * pboard) itemisthe name of a Services menu item, in any
language; a slash in this name represents a submenu.
pboard must contain the data required by the service,
and when the function returns, pboard will contain the
data supplied by the service provider.

Force Services Menu to Update Based on New Ser vices

void NSUpdateDynamicSer vices(void) Re-registers the services the application iswilling to
provide, by reading the file with the extension
“.service” inthe application path or in the standard path

for services.
Other Application Kit Functions
Play the System Beep
void NSBeep(void) Plays the system beep.

Return File-related Pasteboard Types

NSString * NSCreateFileContentsPboar dType(NSString *fil eType)

Returns a string naming a pasteboard type that represents a
file's contents, based on the supplied string fileType.
fileType should generally be the extension part of afile
name. The conversion from anamed file type to a
pasteboard type is simple; no mapping to standard
pasteboard types is attempted.

NSString * NSCr eateFilenamePboar dType(NSString * filename)
Returns a string naming a pasteboard type that representsa
afile name, based on the supplied string filename.

NSString *NSGetFileType(NSString * pboardType) Returns the extension or file name from which the
pasteboard type pboardType was derived. nil isreturned
if pboardTypeisn't a pasteboard type created by
NSCreateFileContentsPboar dType() or
NSCreateFilenamePboar dType().

OpenStep Specification—10/19/94 Application Kit Functions 1-269

NSArray *NSGetFileTypes(NSArray * pboardTypes)
Accepts an array of pasteboard types and returns an array

of the unique extensions and file names from the
file-content and file-nametypesfound in theinput array.
It returns nil if the input array contains no file-content

or file-name types.

Draw a Distinctive Outline around Linked Data

void NSFramel inkRect(NSRect aRect, Draws a distinctive link outline just outside the rectangle
BOOL isDestination) aRect. To draw an outline around a destination link,
isDestination should be Y ES, otherwise NO.

Returns the thickness of the link outline so that the outline
can be properly erased by the application, or for other
purposes.

float NSLinkFrameT hickness(void)

Convert an Event Mask Type to a Mask

unsigned int NSEventM ask FromType(NSEventType type)
Returns the event mask corresponding to type (whichisan

enumeration constant). The returned mask equals 1
|eft-shifted by type bits.

1-270 Chapter 1: Application Kit OpenStep Specification—10/19/94

Types and Constants

Application

id NSApp; Represents the application’s NSApplication object.

typedef struct NSModal Session *NSM odal Session; Thisstructure storesinformation used by the system during
amodal session.

enum { Predefined return values for runM odalFor: and
NSRunStoppedResponse, runM odal Session:.
NSRunAbortedResponse,
NSRunContinuesResponse

h

NSString *NSM odal PanelRunL oopM ode; Input-filter modes passed to NSRunL oop.

NSString *NSEvent TrackingRunL oopM ode;

Box

typedef enum _NSTitlePosition { Thistype's constants represent the locations where an
NSNoTitle, NSBox'stitleis placed in relation to the border
NSAboveTop, (setTitlePosition: and titlePosition).
NSAtTop,
NSBelowTop,
NSAboveBottom,
NSAtBottom,
NSBelowBottom
} NSTitlePosition;

OpenStep Specification—10/19/94 Types and Constants 1-271

Buttons

typedef enum _NSButtonType {
NSM omentaryPushButton,
NSPushOnPushOffButton,
NSToggleButton,
NSSwitchButton,
NSRadioButton,
NSM omentaryChangeButton,
NSOnOffButton

} NSButtonType;

The constants of NSButtonType indicate the way
NSButtons and NSButtonCells behave when
pressed, and how they display their state. They are
used in NSButton’s setType: method.

Cells and Button Cells

typedef enum _NSCellType {
NSNullCellType,
NSTextCellType,
NSImageCellType

} NSCdIType;

typedef enum _NSCelllmagePosition {
NSNol mage,
NSl mageOnly,
NSImagel eft,
NSl mageRight,
NSImageBelow,
NSl mageAbove,
NSl mageOverlaps
} NSCelll magePosition;

1-272 Chapter 1: Application Kit

Represent different types of NSCell objects.
No display.
Displays text.
Displays an image.
Returned from type and set via setType..

Represent the position of an NSButtonCell relative to its
title. Returned from imagePosition and set through
setl magePosition:.

OpenStep Specification—10/19/94

typedef enum _NSCellAttribute {
NSCellDisabled,
NSCellState,
NSPushInCell,
NSCellEditable,
NSChangeGrayCell,
NSCellHighlighted,
NSCellLightsByContents,
NSCellLightsByGray,
NSChangeBackgroundCell,
NSCellLightsByBackground,
NSCelllsBordered,
NSCellHasOverlappingl mage,
NSCellHasl mageHorizontal,
NSCellHasl mageOnL eft Or Bottom,
NSCellChangesContents,
NSCelllslnsetButton

} NSCdllAttribute;

enum {
NSAnyType,
NSIntType,
NSPositivel ntType,
NSFloatType,
NSPositiveFloat Type,
NSDateType,
NSDoubleType,
NSPositiveDoubleType

|3

enum {
NSNoCellMask,
NSContentsCellM ask,
NSPushInCellMask,
NSChangeGrayCellM ask,
NSChangeBackgroundCellM ask

|3

OpenStep Specification—10/19/94

The constant values of NSCellAttribute represent
parameters that you can set and access through
NSCell’s and NSButtonCell’s setPar ameter :to: and
getParameter: methods. Only the first five constants
are used by NSCell; the others apply to NSButtonCells
only.

Numeric data types that an NSCell can accept. Used as
the argument for setEntryType:.

NSButtonCell uses these values to determine how to
highlight a button cell or show an ON state
(returned/passed in showsStateBy/setShowsStateBy
and highlightsBy/setHighlightsBy).

Types and Constants 1-273

Color

enum {
NSGrayM odeColor Panel,
NSRGBM odeColor Pandl,
NSCMY KM odeColor Pandl,
NSHSBM odeColor Pandl,
NSCustomPaletteM odeColor Panel,
NSColorListModeColor Pandl,
NSWheelM odeColor Panel

1

enum {
NSColor PanelGrayM odeM ask,
NSColor PanelRGBM odeM ask,
NSColor PanelCM YK M odeM ask,
NSColor PanelHSBM odeM ask,
NSColor PanelCustomPaletteM odeM ask,
NSColor PanelColorListModeM ask,
NSColor PanelWheelM odeM ask,
NSColor PanelAlIM odesM ask

Tags that identify modes (or views) in the color panel.

Bit masksfor determining the current mode (or view) of the
color panel.

Data Link

typedef int NSDatal inkNumber;

NSString *NSDatal ink FileNameExtension;

typedef enum _NSDatal inkDisposition {
NSLinkInDestination,
NSLinklInSource,
NSLinkBroken

} NSDataL inkDisposition;

typedef enum _NSDatal inkUpdateM ode {
NSUpdateContinuously,
NSUpdateWhenSour ceSaved,
NSUpdateM anually,
NSUpdateNever

} NSDatal inkUpdateM ode;

1-274 Chapter 1: Application Kit

Returned by NSDataLink’s linkNumber method as a
persistent identifier of a destination link.

The file name suffix to be used when data links are saved.
The default is objlink.

Returned by NSDatal ink’s disposition method to identify
alink as adestination link, a source link, or a broken
link.

Identifieswhen alink’s datais to be updated. Set through
the setUpdateM ode: method and returned by
updateM ode.

OpenStep Specification—10/19/94

Drag Operation

typedef enum _NSDragOperation { The constants of this type identify different kinds of
NSDragOperationNone, dragging operations. NSDragOper ationNone implies
NSDragOper ationCopy, that the operation is rejected.
NSDragOperationLink, NSDragOperationPrivate means that the system
NSDragOperationGeneric, leaves the cursor alone.

NSDragOperationPrivate,
NSDragOperationAll
} NSDragOperation;

OpenStep Specification—10/19/94 Types and Constants 1-275

Event Handling

typedef enum _NSEventType {
NSL eftM ouseDown,
NSL eftM ouseUp,
NSRightM ouseDown,
NSRightMouseUp,
NSM ouseM oved,
NSL eftM ouseDragged,
NSRightM ouseDr agged,
NSM ouseEntered,
NSM ouseExited,
NSKeyDown,
NSKeyUp,
NSFlagsChanged,
NSPeriodic,
NSCursorUpdate

} NSEventType;

enum {
NSUpArrowFunctionK ey = 0xF700,
NSDownArrowFunctionKey = OxF701,
NSL eftArrowFunctionKey = OxF702,
NSRightArrowFunctionKey = 0xF703,
NSF1FunctionKey = O0xF704,
NSF2FunctionKey = OxF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = O0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = OxF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey = OxF70D,
NSF11FunctionK ey = OxF70E,
NSF12FunctionK ey = OxF70F,
NSF13FunctionK ey = 0xF710,
NSF14FunctionKey = OxF711,
NSF15FunctionKey = OxF712,
NSF16FunctionKey = OxF713,
NSF17FunctionKey = OxF714,
NSF18FunctionK ey = OxF715,
NSF19FunctionK ey = OxF716,
NSF20FunctionK ey = OxF717,
NSF21FunctionKey = OxF718,

1-276 Chapter 1. Application Kit

Each constant of NSEvent Type identifies an event type.
(See the NSEvent class description.)

Unicodes that identify function keys on the keyboard,
OpenStep reserves the range OxF700-0xF8FF for
this purpose. The availability of some keysis
system-dependent.

OpenStep Specification—10/19/94

NSF22FunctionK ey = OxF719,
NSF23FunctionKey = OxF71A,
NSF24FunctionKey = OxF71B,
NSF25FunctionKey = OxF71C,
NSF26FunctionKey = OxF71D,
NSF27FunctionKey = OXF71E,
NSF28FunctionKey = OxF71F,
NSF29FunctionK ey = 0xF720,
NSF30FunctionKey = OxF721,
NSF31FunctionKey = OxF722,
NSF32FunctionKey = OxF723,
NSF33FunctionKey = 0xF724,
NSF34FunctionK ey = OxF725,
NSF35FunctionK ey = OxF726,
NSInsertFunctionKey = OxF727,
NSDeleteFunctionKey = OxF728,
NSHomeFunctionKey = 0xF729,
NSBeginFunctionKey = OxF72A,
NSEndFunctionKey = OxF72B,
NSPageUpFunctionKey = OxF72C,
NSPageDownFunctionKey = OxF72D,
NSPrintScreenFunctionKey = OxF72E,
NSScrollL ock FunctionK ey = OxF72F,
NSPauseFunctionK ey = 0xF730,
NSSysRegFunctionKey = OxF731,
NSBreakFunctionKey = 0xF732,
NSResetFunctionKey = 0xF733,
NSStopFunctionKey = 0xF734,
NSMenuFunctionKey = 0xF735,
NSUser FunctionK ey = 0xF736,
NSSystemFunctionKey = 0xF737,
NSPrintFunctionKey = OxF738,
NSClearLineFunctionKey = OxF739,
NSClear DisplayFunctionKey = OXF73A,
NSInsertLineFunctionKey = OxF73B,
NSDeletel ineFunctionKey = 0xF73C,
NSInsertChar FunctionKey = OxF73D,
NSDeleteChar FunctionK ey = OXF73E,
NSPrevFunctionKey = OxF73F,
NSNextFunctionK ey = 0xF740,
NSSelectFunctionKey = OxF741,
NSExecuteFunctionKey = OxF742,
NSUndoFunctionKey = 0xF743,
NSRedoFunctionKey = OxF744,
NSFindFunctionKey = OxF745,
NSHelpFunctionK ey = OxF746,

OpenStep Specification—10/19/94 Types and Constants 1-277

NSM odeSwitchFunctionKey = OxF747

b

enum {
NSAlphaShiftkeyM ask,
NSShiftkeyM ask,
NSControlKeyMask,
NSAlternateK eyM ask,
NSCommandKeyM ask,
NSNumericPadK eyM ask,
NSHelpKeyM ask,
NSFunctionK eyM ask

h

enum {
NSL eftM ouseDownM ask,
NSL eftM ouseUpM ask,
NSRightMouseDownM ask,
NSRightMouseUpM ask,
NSM ouseM ovedM ask,
NSL eftM ouseDraggedM ask,
NSRightM ouseDraggedM ask,
NSM ouseEnteredM ask,
NSM ouseExitedM ask,
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedM ask,
NSPeriodicM ask,
NSCur sorUpdateM ask,
NSAnyEventM ask

Device-independent bit masks for evaluating event-
modifier flagsto determine which modifier key (if any)

was pressed.

Bit masks for determining the type of events.

Exceptions

Global Exception Strings

Thefollowing global stringsidentify the exceptionsreturned by various operationsin the Application Kit. They are

defined in NSErrors.h.

NSString *NSAbortM odal Exception;
NSString *NSAbortPrintingException;

NSString *NSAppKitl gnoredException;

1-278 Chapter 1: Application Kit

OpenStep Specification—10/19/94

NSString *NSAppKitVirtualM emoryException;
NSString *NSBadBitmapPar ameter sException;
NSString *NSBadCompar isonException;

NSString *NSBadRTFColor TableException;
NSString *NSBadRT FDir ectiveException;

NSString *NSBadRT FFont TableException;

NSString *NSBadRT FStyleSheetException;

NSString *NSBrowser | 1legal Del egateException;
NSString *NSColor Listl OException;

NSString *NSColor ListNotEditableException;
NSString * NSDr aggingException;

NSString * NSFontUnavailableException;

NSString * NSl llegal Selector Exception;

NSString * NSl mageCacheException;

NSString *NSNibL oadingException;

NSString *NSPPDI ncludeNotFoundException;
NSString *NSPPDI ncludeStack Over flowException;
NSString * NSPPDI ncludeStack Under flowException;
NSString *NSPPDPar seException;

NSString * NSPasteboar dCommunicationException;
NSString * NSPrintOper ationExistsException; (Defined in NSPrintOperation.h.)
NSString * NSPrintPackageException;

NSString * NSPrintingCommunicationException;
NSString *NSRT FProper tyStack Over flowException;
NSString *NST | FFEXxception;

NSString *NSTextL ineTooL ongException;

NSString * NSTextNoSel ectionException;

NSString *NSTextReadException;

OpenStep Specification—10/19/94 Types and Constants 1-279

NSString *NSTextWriteException;

NSString *NSTypedStreamVer sionException;

NSString * NSWindowSer ver CommunicationException;
NSString *NSWor dTablesReadException;

NSString *NSWor dTablesWriteException;

Fonts

typedef unsigned int NSFontTraitM ask;

enum {
NSltalicFontM ask,
NSBoldFontM ask,
NSUnboldFontMask,

NSNonStandar dChar acter SetFontM ask,,

NSNarrowFontM ask,
NSExpandedFontM ask,
NSCondensedFontM ask,
NSSmallCapsFontM ask,
NSPoster FontM ask,
NSCompressedFontM ask,
NSUnitalicFontM ask

|3
typedef unsigned int NSGlyph;

enum {
NSFPPreviewButton ,
NSFPRevertButton,
NSFPSetButton,
NSFPPreviewField,
NSFPSizeField,
NSFPSizeTitle,
NSFPCurrentField

1-280 Chapter 1: Application Kit

Characterizes one or more of afont’straits. It'sused asan
argument type for several of the methods in the
NSFontManager class. You build amask by OR’ing
together the following enumeration constants.

Values used by NSFontManager to identify font traits.

A typefor numbersidentifying font glyphs. It'sused asthe
argument type for several of the methods in NSFont.

Tags identifying views in the font panel.

OpenStep Specification—10/19/94

const float * NSFontldentityMatrix;

NSString *NSAFM Ascender ;
NSString *NSAFM CapHeight;
NSString *NSAFM Char acter Set;
NSString *NSAFM Descender ;
NSString *NSAFM EncodingScheme;
NSString *NSAFM FamilyName;
NSString *NSAFM FontName;,
NSString *NSAFM FormatVersion;
NSString *NSAFM FullName;
NSString *NSAFM ItalicAngle;
NSString *NSAFM M appingScheme;
NSString *NSAFM Notice;

NSString *NSAFM Under linePosition;
NSString *NSAFM Under lineT hickness;
NSString *NSAFM Version;

NSString *NSAFM Weight;

NSString *NSAFM XHeight;

Identifiesafont matrix that’s used for fonts displayed in an
NSView object that has an unflipped coordinate system.

Global keysto access the values available in the AFM
dictionary. You can convert the appropriate
values (e.g., ascender, cap height) to floating point
values by using NSString's float Value method.

Graphics

typedef int NSWindowDepth

typedef enum _NSTIFFCompression {
NSTIFFCompressionNone =1,
NSTIFFCompressionCCITTFAX3 =3,
NSTIFFCompressionCCITTFAX4 =4,
NSTIFFCompressionLZW =5,
NSTIFFCompressionJPEG =6,
NSTIFFCompressionNEXT = 32766,
NSTIFFCompressionPackBits = 32773,
NSTIFFCompressionOIdJPEG = 32865

} NSTIFFCompression;

OpenStep Specification—10/19/94

This type gives the window-depth limit. Use the
NSAvailablewindowDepths() function to get alist of
available window depths. Use the functions
NSBitsPer SampleFromDepth(),

NSBitsPer Pixel FromDepth(), NSPlanar FromDepth,
and NSColor SpaceFromDepth() to extract
information from awindow depth. The
NSWindowDepth typeis also used as an argument type
of methods in NSScreen and NSWindow.

The constants defined in this type represent the various
TIFF (tag image file format) data compression
schemes. They are defined in NSBitM aplmageRep and
used in several methods of that class aswell asin
the TIFFRepresentationUsingCompression:factor:
method of NSImage.

Types and Constants 1-281

enum { NSImageRepM atchesDevice indicates that the value
NSImageRepM atchesDevice varies according to the output device. It can be
} passed in (or received back) as the value of
NSImageRep’s bitsPer Sample, pixelsWide, and
pixelsHigh.

Colorspace Names

Predefined colorspace names. Used as argumentsin NSDrawBitM ap() and NSNumber Of Color Components();
value returned from NSColor SpaceFromDepth().

NSString *NSCalibratedWhiteColor Space;
NSString *NSCalibratedBlack Color Space;
NSString *NSCalibratedRGBColor Space;
NSString *NSDeviceWhiteColor Space;
NSString * NSDeviceBlack Color Space;
NSString * NSDeviceRGBColor Space;
NSString *NSDeviceCM Y K Color Space;
NSString *NSNamedColor Space;

NSString * NSCustomCol or Space;

Gray Values
Standard gray values for the 2-bit deep grayscale colorspace.
const float NSBlack;
const float NSDarkGray;
const float NSWhite;
const float NSLightGray;

Device Dictionary Keys
Keysto get designated values from device dictionaries.
NSString * NSDeviceResolution;
NSString *NSDeviceColor SpaceName
NSString *NSDeviceBitsPer Sample;
NSString * NSDevicel sScreen;

1-282 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSString *NSDevicel sPrinter;
NSString *NSDeviceSize;

Matrix

typedef enum _NSMatrixMode { The constants in this type represent the modes of operation
NSRadioM odeM atrix, of an NSMatrix.
NSHighlightM odeM atrix,
NSListModeMatrix,
NSTrackModeMatrix
} NSMatrixM ode;

Notifications

Notifications are posted to all interested observers of a specific condition to alert them that the condition has
occurred. Global stringscontain the actual text of the notification. Inthe Application Kit, these are defined per class.
See the Foundation’s NSNotification and NSNotificationCenter for details.

NSString *NSApplicationDidBecomeActiveNotification; NSApplication
NSString *NSApplicationDidFinishL aunchingNoatification;
NSString *NSApplicationDidHideNotification;

NSString *NSApplicationDidResignActiveNotification;
NSString *NSApplicationDidUnhideNatification;

NSString *NSApplicationDidUpdateNotification;

NSString *NSApplicationWillBecomeActiveNotification;
NSString *NSApplicationWillFinishL aunchingNotification;
NSString *NSApplicationWillHideNatification;

NSString *NSApplicationWillResignActiveNotification;
NSString *NSApplicationWillUnhideNotification;

NSString *NSApplicationWillUpdateNotification;

OpenStep Specification—10/19/94 Types and Constants 1-283

NSString *NSColor ListChangedNotification;
NSString * NSColor Panel Color ChangedNatification;

NSString *NSControl TextDidBeginEditingNotification;
NSString *NSControl TextDidEndEditingNotification;
NSString *NSControl TextDidChangeNaotification;

NSString * NSl mageRepRegistryChangedNotification;

NSString *NSSplitViewDidResizeSubviewsNotification;
NSString * NSSplitViewWillResizeSubviewsNotification;

NSString *NSTextDidBeginEditingNotification;
NSString * NSTextDidEndEditingNotification;
NSString * NSTextDidChangeNoatification;

NSString *NSViewFrameChangedNotification;
NSString * NSViewFocusChangedNoatification;

NSString *NSWindowDidBecomeK eyNotification;
NSString *NSWindowDidBecomeM ainNotification;
NSString *NSWindowDidChangeScreenNotification;
NSString *NSWindowDidDeminiaturizeNotification;
NSString *NSWindowDidExposeNatification;
NSString *NSWindowDidMiniaturizeNotification;
NSString *NSWindowDidM oveNotification;
NSString *NSWindowDidResignK eyNotification;
NSString *NSWindowDidResignM ainNatification;

1-284 Chapter 1: Application Kit

NSColorList
NSColorPanel

NSControl

NSImageRep

NSSplitView

NSText

NSView

NSWindow

OpenStep Specification—10/19/94

NSString *NSWindowDidResizeNatification;
NSString *NSWindowDidUpdateNotification;
NSString *NSWindowWillCloseNotification;
NSString *NSWindowWillMiniaturizeNotification;
NSString *NSWindowWillM oveNotification;

NSString *NSWor kspaceDidL aunchApplicationNotification; NSWorkspace
NSString *NSWor kspaceDidM ountNoatification;

NSString * NSWor kspaceDidPer for mFileOper ationNotification;

NSString *NSWor kspaceDid Ter minateApplicationNotification;

NSString *NSWor kspaceDidUnmountNotification;

NSString * NSWor kspaceWillL aunchApplicationNotification;

NSString *NSWor kspaceWillPower OffNotification;

NSString *NSWor kspaceWillUnmountNotification;

Panel

enum { Values returned by the standard panel buttons,
NSOKButton = 1, OK and Cancel.
NSCancelButton =0

b

enum { Values returned by the NSRunAlertPanel() function and
NSAlertDefaultReturn =1, by runM odal Session: when the modal sessionisrun
NSAlertAlternateReturn =0, with a Panel provided by NSGetAlertPanel().
NSAlertOther Return = -1,
NSAlertErrorReturn =-2

|3

OpenStep Specification—10/19/94 Types and Constants 1-285

Page Layout

enum { Tagsthat identify buttons, fields, and other views of the
NSPL I mageButton, Page Layout panel.
NSPLTitleField,
NSPL Paper NameButton,

NSPL UnitsButton,
NSPLWidthForm,

NSPL HeightForm,
NSPL OrientationM atrix,
NSPL CancelButton,
NSPL OK Button
1
Pasteboard

Pasteboard Type Globals
I dentifies the standard pasteboard types. These are used in a variety of NSPasteboard methods and functions.
NSString *NSStringPboar dType;
NSString *NSColor Pboar dType;
NSString *NSFileContentsPboardType;
NSString *NSFilenamesPboar dType;
NSString * NSFontPboar dType;
NSString *NSRuler Pboar dType;
NSString *NSPost ScriptPboar dType;
NSString *NSTabular TextPboar dType;
NSString *NSRTFPboardType;
NSString *NST | FFPboar dType;
NSString *NSDatal inkPboar dType; (Defined in NSDataLink.h.)
NSString *NSGener alPboar dType; (Defined in NSSelection.h.)

1-286 Chapter 1: Application Kit OpenStep Specification—10/19/94

Pasteboard Name Globals

| dentifies the standard pasteboard names. Used in class method pasteboar dWithName: to get a pasteboard by
name.

NSString *NSDragPboard;
NSString *NSFindPboard;
NSString *NSFontPboar d;
NSString * NSGener al Pboar d;
NSString *NSRulerPboard;

Printing
typedef enum _NSPrinterTableStatus { These constants describe the state of a printer-information
NSPrinter TableOK, table stored by an NSPrinter object. It is the argument
NSPrinter TableNotFound, type of the return value of statusFor Table:.

NSPrinter TableError
} NSPrinterTableStatus;

typedef enum _NSPrintingOrientation { These constants represent the way a pageis oriented for
NSPortraitOrientation, printing.
NSL andscapeOrientation

} NSPrintingOrientation;

typedef enum _NSPrintingPageOrder { These constants describe the order in which pages are
NSDescendingPageOr der, spooled for printing. NSSpecial PageOr der tellsthe
NSSpecial PageOr der, spooler not to rearrange pages. Set through
NSAscendingPageOr der, NSPrintingOperation’s setPageOr der: method and
NSUnknownPageOr der returned by its pageOr der method.

} NSPrintingPageOr der;

typedef enum _ N SPrintingPaginationMode { These constants represent the different ways an imageis
NSAutoPagination, divided into pages during pagination. Pagination can
NSFitPagination, occur automatically, the image can be forced onto a
NSClipPagination page, or it can be clipped to a page.

} NSPrintingPaginationM ode;

OpenStep Specification—10/19/94 Types and Constants 1-287

enum { Tags that identify text fields, controls, and other viewsin
NSPPSaveButton, the Print Panel.
NSPPPreviewButton,
NSFaxButton,
NSPPTitleField,
NSPPImageButton,
NSPPNameTitle,
NSPPNameField,
NSPPNoteTitle,
NSPPNoteField,
NSPPStatusTitle,
NSPPStatusField,
NSPPCopiesField,
NSPPPageChoiceM atrix,
NSPPPageRangeFrom,
NSPPPageRangeTo,
NSPPScaleField,
NSPPOptionsButton,
NSPPPaper FeedButton,
NSPPL ayoutButton

b

Printing Information Dictionary Keys

The keysin the mutable dictionary associated with NSPrintingl nfo. See NSPrintinglnfo.h for types and
descriptions of values.

NSString *NSPrintAllPages,

NSString *NSPrintBottomMar gin;
NSString *NSPrintCopies;

NSString *NSPrintFaxCover SheetName;
NSString *NSPrintFaxHighResolution;
NSString * NSPrintFaxM odem;

NSString *NSPrintFaxReceiver Names;
NSString * NSPrintFaxReceiver Number s,
NSString * NSPrintFaxRetur nReceipt;
NSString *NSPrintFaxSendTime;
NSString *NSPrintFaxTrimPageEnds;
NSString * NSPrintFaxUseCover Shest;

1-288 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSString *NSPrintFir stPage;
NSString *NSPrintHorizonal Pagination;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintJobDisposition;
NSString *NSPrintJobFeatures,
NSString *NSPrintL astPage;

NSString *NSPrintLeftMargin;
NSString *NSPrintM anual Feed;
NSString *NSPrintOrientation;
NSString * NSPrintPackageException;
NSString * NSPrintPagesPer Sheet;
NSString * NSPrintPaper Feed;
NSString *NSPrintPaper Name;
NSString *NSPrintPaper Size;
NSString *NSPrintPrinter;

NSString *NSPrintRever sePageOrder;
NSString *NSPrintRightMargin;
NSString * NSPrintSavePath;

NSString *NSPrintScalingFactor;
NSString *NSPrintTopMar gin;
NSString *NSPrintVertical Pagination;
NSString *NSPrintVerticallyCentered;

Print Job Disposition Values

These global constants define the disposition of a print job. See NSPrintInfo's setJobDisposition: and
jobDisposition.

NSString *NSPrintCancelJob;
NSString *NSPrintFaxJob;
NSString * NSPrintPreviewJob;

OpenStep Specification—10/19/94 Types and Constants 1-289

NSString *NSPrintSavelJob;
NSString *NSPrintSpoolJob;

Save Panel

enum {
NSFileHandlingPanell mageButton,
NSFileHandlingPanel TitleField,
NSFileHandlingPanel Browser,
NSFileHandlingPanel Cancel Button,
NSFileHandlingPanel OK Button,
NSFileHandlingPanelForm,
NSFileHandlingPanelHomeButton,
NSFileHandlingPanelDiskButton,
NSFileHandlingPanel DiskEjectButton

Tagsthat identify buttons, fields, and other viewsin the
Save Panel.

Scroller

typedef enum _NSScroll ArrowPosition {
NSScroller ArrowsM axEnd,
NSScroller ArrowsMinEnd,
NSScroller ArrowsNone

} NSScrollArrowPosition;

typedef enum _NSScrollerPart {
NSScroller NoPart,
NSScroller DecrementPage,
NSScrollerKnob,
NSScroller | ncrementPage,
NSScroller DecrementLine,
NSScrollerIncrementLine,
NSScroller KnobSlot

} NSScrollerPart;

typedef enum _NSScrollerUsablePart {
NSNoScrollerParts,
NSOnlyScroller Arrows,
NSAllScroller Parts

} NSUsableScrollerParts;

1-290 Chapter 1: Application Kit

NSScroller uses these constantsin its setArrowPosition:
method to set the position of the arrows within the
scroller.

NSScroller uses these constantsin its hitPart method to
identify the part of the scroller specified in a mouse
event.

These constants define the usable parts of an NSScroller
object.

OpenStep Specification—10/19/94

typedef enum _NSScrollerArrow {
NSScroller I ncrementArrow,
NSScroller DecrementArrow
} NSScroller Arrow;

const float NSScroller Width;

These constants indicate the two types of scroller arrow.
NSScroller’s drawArrow: highlight: method takes an
NSScrollerArrow as the first argument.

| dentifies the default width of avertical NSScroller object
and the default height of ahorizontal NSScroller object.

Text

typedef struct NSBreakArray {
NSTextChunk chunk;
NSLineDesc breakd[1];
} NSBreakArray;

typedef struct _NSCharArray {
NSTextChunk chunk;
unsigned char text[1];

} NSCharArray;

typedef unsigned short (*NSChar Filter Func) (
unsigned short char Code,
int flags,
NSStringEncoding theEncoding);

typedef struct NSFSM {
const struct _ NSFSM *next;
short delta;
short token;

} NSFSM;

typedef struct NSHeightChange {
NSLineDesc lineDesc;
NSHeightlnfo heightl nfo;
} NSHeightChange;

typedef struct NSHeightinfo {
float newHeight;
float oldHeight;
NSLineDesc lineDesc;
} NSHeightlnfo;

OpenStep Specification—10/19/94

Holds line-break information for an NSText object. It's
mainly an array of line descriptors.

Holds the character array for the current linein the NSText
object.

The character filter function analyzes each character the
user entersin the NSText object.

A word definition finite-state machine structure used by an
NSText object.

Associates line descriptors and line-height information in
an NSText object.

Stores height information for each line of text in an NSText
object.

Types and Constants 1-291

typedef struct NSLay {
float x;
float y;
short offset;
short chars;
id font;
void *paraStyle;
NSRun *run;
NSLayFlags|Flags,
} NSLay;

typedef struct _NSLayArray {
NSTextChunk chunk;
NSLay lays[1];

} NSLayArray;

typedef struct {
unsigned int mustM ove:1,;
unsigned int isMoveChar:1;
unsigned int RESERVED: 14;
} NSLayFlags;

typedef struct _NSLaylnfo {

NSRect rect;

float descent;

float width;

float left;

float right;

float rightIndent;

NSLayArray *lays,

NSWidthArray *widths;

NSCharArray *chars,

NSTextCache cache;

NSRect *textClipRect;

struct _|Flags{
unsigned int horizCanGrow:1;
unsigned int vertCanGrow:1,
unsigned int erase:1;
unsigned int ping:1;
unsigned int endsParagraph:1,;
unsigned int resetCache:1,;
unsigned int RESERVED:10;

} IFlags;

} NSLaylnfo;

typedef short NSLineDesc;

1-292 Chapter 1: Application Kit

Represents a single sequence of text in aline and records
everything needed to select or draw that piece.

Holds the layout for the current line. Since the structure’s
first fieldisan NSTextChunk structure, NSL ayArrays
can be manipulated by the functions that manage
variable-sized arrays of records.

Records whether atext lay in an NSText object needs
special treatment (e.g., because of non-printing
characters).

NSText’s scanning and drawing functions use this
structure to communicate information about lines of
text.

Used to identify lines of text in the NSText object.

OpenStep Specification—10/19/94

typedef enum _NSParagraphProperty {
NSL eftAlignedPar agraph,
NSRightAlignedPar agraph,
NSCenter AlignedPar agr aph,
NSJustificationAlignedPar agr aph,
NSFirstlndentPar agr aph,
NSIndentPar agraph,
NSAddTabParagraph,
NSRemoveTabPar agraph,
NSL eftM ar ginPar agr aph,
NSRightM arginPar agraph

} NSParagraphProperty;

typedef struct NSRun {
id font;
int chars;
void *paraStyle;
int textRGBColor;
unsigned char superscript;
unsigned char subscript;
id info;
NSRunFlagsrFlags,

} NSRun;

typedef struct NSRunArray {
NSTextChunk chunk;
NSRun rung[1];

} NSRunArray;

typedef struct {
unsigned int underline:1;
unsigned int dummy:1;
unsigned int subclassWantsRTF:1;
unsigned int graphic:1;
unsigned int forcedSymbol:1,;
unsigned int RESERVED:11;

} NSRunFlags,

typedef struct NSSelPt {
int cp;
intling;
float x;
float y;
int clst;
float ht;
} NSSelPt;

OpenStep Specification—10/19/94

The constants of this type identify specific
paragraph properties for selected text.
NSText’s setSel Prop: method takes this
argument type.

In an NSText object, this structure represents asingle
sequence of text with a given format.

This structure holds the array of text runsin an NSText
object. Sincethefirst field is an NSTextChunk structure
you can manipulate the itemsin the array with the
functions that manage variable-sized arrays of records.

Thefields of this structure record whether arunin an
NSText object contains graphics, is underlined, or
if an alternate character forced the use of a symbol.

Represents one end of a selection in an NSText object.
Character position.
Offset of LineDesc in break table.
x coordinate.
y coordinate.
Character position of first character in the line.
Line height.

Types and Constants 1-293

typedef struct _NSTabStop {
short kind;
float x;

} NSTabStop;

typedef struct NSTextBlock {
struct _NSTextBlock *next;
struct _NSTextBlock *prior;
struct _tbFlags {
unsigned int malloced:1;
unsigned int PAD:15;
} tbFlags;
short chars;
unsigned char *text;
} NSTextBlock;

typedef struct NSTextCache {
int cur Pos;
NSRun *cur Run;
int runFirstPos;
NSTextBlock *cur Block;
int blockFirstPos;

} NSTextCache;

typedef struct _NSTextChunk {
short growby;
int allocated;
int used;

} NSTextChunk;

typedef char *(*NSTextFilter Func) (

id sdif,

unsigned char * insertText,
int *insertLength,

int position);

typedef int (*NSTextFunc) (
id sdif,
NSLaylnfo *laylnfo);

typedef enum _NSTextAlignment {
NSL eft TextAlignment,
NSRightTextAlignment,
NSCenter TextAlignment,
NSJustifiedTextAlignment,
NSNatural TextAlignment
} NSTextAlignment;

1-294 Chapter 1: Application Kit

This structure describes an NSText object’s tab stops.

A structure holds text characters in blocks no bigger than
NSTextBlock Size (see below). A linked list of these
text blocks comprises the text for an NSText
object.

This structure describes the current text block and run, and
the cursor position in the text.

NSText uses this structure to implement variable-sized
arrays of records.

A text filter function implements autoindenting and other
featuresin an NSText object.

Thisisthe type for an NSText object’s scanning and
drawing function, as set through the setScanFunc:
and setDrawFunc: methods.

The constants of this type determine text alignment. Used
by methods of NSCell, NSControl, NSForm,
NSFormCell, and NSText. NSNatural TextAlignment
indicates the default alignment for the text.

OpenStep Specification—10/19/94

typedef struct _NSTextStyle {
float indent1st;
float indent2nd;
float lineHt;
float descentLine;
NSTextAlignment alignment;
short numTabs,
NSTabStop *tabs,
} NSTextStyle;

typedef struct _NSWidthArray {
NSTextChunk chunk;
float widthg[1];

} NSwidthArray;

enum {
NSL eftTab

1

enum {
NSBackspaceKey =8,
NSCarriageReturnKey =13,
NSDeleteK ey= Ox7f,
NSBacktabKey =25

1

enum {
NSl llegal TextM ovement =0,
NSReturnTextM ovement = 0x10,
NSTabTextMovement = 0x11,
NSBacktabTextM ovement = 0x12,
NSL eftTextMovement = 0x13,
NSRightTextMovement = 0x14,
NSUpTextMovement = 0x15,
NSDownTextM ovement = 0x16

¥

enum {
NSTextBlockSize =512

1

OpenStep Specification—10/19/94

NSText uses this structure to describe text layout and tab
stops.

Holds the character widths for the current line.
Since thefirst field is an NSTextChunk structure
you can manipulate the itemsin the array with the
functions that manage variable-sized arrays of records.

This constant is used by the NSText
object’stab functions.

These character-code constants are used by the NSText
object’s character filter function.

Movement codes describing types of movement between
text fields. Passed in to NSText delegates as the last
argument of textDidEnd:endChar:.

The size, in bytes, of atext block.

Types and Constants 1-295

Break Tables

These tables (with their associated sizes) are finite-state machines that determine word wrapping in an NSText
object.

const NSFSM *NSCBreak Table;

int NSCBreak TableSize;

const NSFSM *NSEnglishBreak Table;
int NSEnglishBreak TableSize;

const NSFSM *NSEnglishNoBreakTable;
int NSEnglishNoBreak TableSize;

Character Category Tables
These tables define the character classes used in an NSText object’s break and click tables.
const unsigned char *NSCChar CatTable;
const unsigned char *NSEnglishChar CatTable;

Click Tables

NSText objects use these tabl es as finite-state machines that determine which characters are selected when the user
double-clicks.

const NSFSM *NSCClickTable;

int NSCClickTableSize;

const NSFSM *NSEnglishClick Table;
int NSEnglishClickTableSize;

Smart Cut and Paste Tables

Thesetables are suitable as arguments for the NSText methods setPreSel Smar table: and setPostSel SmartTable:.
When users paste text into an NSText object, if the character to theleft (right) side of the new word isnot in the left
(right) table, an extra space is added to that side.

const unsigned char *NSCSmartL eftChars;

const unsigned char *NSCSmartRightChars;

const unsigned char *NSEnglishSmartL eftChars;
const unsigned char *NSEnglishSmartRightChars;

1-296 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSCStringText Internal State Structure

Thisisthe structure returned by the cStringTextl nter nal State method of NSCStringText, for use only by
applications that need to access the internal state of an NSCStringText object.

typedef struct NSCStringTextInternal State {
const NSFSM *break Table;
const NSFSM *click Table;

const unsigned char *preSelSmartTable;
const unsigned char *postSel SmartTable;
const unsigned char *char CategoryTable;

char delegateM ethods;
NSCharFilterFunc char Filter Func;
NSTextFilterFunc textFilter Func;

NSString *_string;
NSTextFunc scanFunc;
NSTextFunc drawFunc;
id delegate;

int tag;
void *cursor TE;

NSTextBlock *fir stTextBlock;
NSTextBlock *last TextBlock;
NSRunArray *theRuns;

NSRun typingRun;
NSBreakArray *theBreaks;
int growLine;

int textLength;

float maxy;

float maxX;

NSRect bodyRect;
float border Width;
char clickCount;
NSSel Pt sp0;
NSSel Pt spN;
NSSelPt anchorL;
NSSelPt anchorR;
NSSize maxSize;

OpenStep Specification—10/19/94

Pointer to state table that specifies word and line breaks

Pointer to state table that defines word boundaries for
double-click selection

Pointer to table that specifies which characters on the left
end of aselection are treated as equivalent to a space

Pointer to table that specifies which characters on the right
end of aselection are treated as equivalent to a space

Pointer to table that maps ASCII characters to character
classes.

Record of notification methods the delegate implements

Function to check each character asit’styped into the text

Function to check text that's being added to the
NSCStringText object

Reserved for internal use

Function that calculates the line of text

Function that draws the line of text

Object that's notified when the NSCStringText object is
modified

Integer the delegate uses to identify the NSCStringText
object

Timed entry number for the vertical bar that marks the
insertion point

Pointer to first record in alinked list of text blocks

Pointer to last record in alinked list of text blocks

Pointer to array of format runs. By default, theRuns points
to asingle run of the default font

Format run to use for the next characters entered

Pointer to the array of line breaks

Line containing the end of the growing selection

Number of charactersin the NSCStringText object

Bottom of the last line of text, relative to the origin of
bodyRect

Widest line of text. Only accurate after calcLinemethod is
invoked

Rectangle in which the NSCStringText object draws

Reserved for internal use

Number of clicksthat created the selection

Starting position of the selection

Ending position of the selection

L eft anchor position

Right anchor position

Maximum size of the frame rectangle

Types and Constants 1-297

NSSize minSize;

struct _tFlags{

#ifdef _ BIG_ENDIAN__
unsigned int _editM ode:2;
unsigned int _selectM ode:2;
unsigned int _caretState:2;
unsigned int changeState:1,;

unsigned int charWrap:1,

unsigned int haveDown:1,;

unsigned int anchor1s0:1;
unsigned int horizResizable:1,

unsigned int vertResizable:1;

unsigned int over strikeDiacriticals:1;
unsigned int monoFont:1,;

unsigned int disableFontPanel:1;
unsigned int inClipView:1;

#else
unsigned int inClipView:1;
unsigned int disableFontPanel:1;
unsigned int monoFont:1,;
unsigned int over strikeDiacriticals:.1;
unsigned int vertResizable:1;
unsigned int horizResizable:1,
unsigned int anchor1s0:1;
unsigned int haveDown:1,;
unsigned int charWrap:1,
unsigned int changeState:1;
unsigned int _caretState:2;
unsigned int _selectM ode:2;
unsigned int _editM ode:2;
#endif
} tFlags,
void *_info;
void *_textStr;
} NSCStringTextlnternal State;

1-298 Chapter 1: Application Kit

Minimum size of the frame rectangle

Reserved for internal use

Reserved for internal use

Reserved for internal use

True if any changes have been made to the text since the
NSCStringText object became first responder

True if the NSCStringText object wraps words whose
length exceedsthelinelength on acharacter basis. False
if such words are truncated at end of line

True if the left mouse button (or any button if button
functions are not differentiated) is down

True if the anchor’s position is at sp0

True if the NSCStringText object’s width can grow or
shrink

True if the NSCStringText object’s height can grow or
shrink

Reserved for internal use

True if the NSCStringText object uses one font for al its
text

True if the NSCStringText object doesn’t update the font
panel automatically

True if the NSCStringText object is a subview of an
NSClipView

Reserved for internal use
Reserved for internal use

OpenStep Specification—10/19/94

View

typedef int NSTrackingRectTag; A uniqueidentifier of atracking rectangle assigned by

NSView. (See addTrackingRectangle:owner:
assumel nside:.)

typedef enum _NSBorderType { Constants representing the four types of borders that can
NSNoBorder, appear around NSView objects.
NSLineBorder,
NSBezelBor der,
NSGrooveBorder

} NSBorder Type;

enum { NSView uses these autoresize constants to describe
NSViewNotSizable, the parts of aview (or its margins) that are resized
NSViewMinXMargin, when the view's superview is resized.

NSViewWidthSizable,
NSViewMaxXMargin,
NSViewMinYMargin,
NSViewHeightSizable,
NSViewMaxYMargin

b
Window

enum { These constants list the window-device tiers that the
NSNormalWindowlLevel =0, Application Kit uses. Windows are ordered (or
NSFloatingWindowL evel =3, “layered”) within tiers: The uppermost window in one
NSDockWindowLevel =5, tier can still be obscured by the lowest window in
NSSubmenuWindowL evel =10, the next higher tier.
NSMainMenuWindowL evel =20

b

enum { Bitmap masks to determine certain window styles.
NSBorderlessWindowM ask,
NSTitledWindowM ask,
NSClosablewWindowM ask,
NSMiniaturizablewindowM ask,
NSResizablewWindowM ask

b

OpenStep Specification—10/19/94 Types and Constants 1-299

Size Globals
These global constants give the dimensions of an icon and contained.
NSSize NSl conSize;
NSSize NSTokenSize:

Workspace

Workspace File Type Globals

I dentifies the type of file queried by the method getl nfoFor File:application:type: (passed back by referencein
last argument).

NSString *NSPlainFileType;

NSString *NSDirector yFileType;
NSString *NSApplicationFileType;
NSString * NSFilesystemFileType;
NSString *NSShell CommandFileType;

Workspace File Operation Globals

Used as file-operation argumentsin the per formFileOper ation: sour ce:destination:files: options: method (first
argument).

NSString * NSWor kspaceCompressOper ation;
NSString * NSWor kspaceCopyOper ation;
NSString * NSWor kspaceDecompr essOper ation;
NSString *NSWor kspaceDecr yptOper ation;
NSString * NSWor kspaceDestr oyOper ation;
NSString * NSWor kspaceDuplicateOper ation;
NSString *NSWor kspaceEncryptOper ation;
NSString * NSWor kspacel inkOper ation;
NSString * NSWor kspaceM oveOper ation;

1-300

NSString *NSWor kspaceRecycleOper ation;

OpenStep Specification—10/19/94 Types and Constants 1-301

1-302 Chapter 1: Application Kit OpenStep Specification—10/19/94

2 Foundation Kit

Introduction

The Foundation Kit defines a base layer of Objective C classes for OpenStep. In addition to providing a set of
useful primitive object classes, it introduces several paradigms that define functionality not covered by the
Objective C language. The Foundation Kit is designed with these goalsin mind:

e To provide a set of basic utility classes
» To make software development easier by introducing consistent conventions for things such as deallocation
» To support Unicode strings, object persistence, and object distribution

» To provide alevel of operating system independence, enhancing application portability

OpenStep Specification—10/19/94 Introduction: Foundation Kit 2-1

Classes

The Foundation Kit includes the root class for amost all OpenStep classes, classes representing basic data types
such as strings and byte arrays, collections of other objects, and classes representing system information such as
dates. The following diagram shows the inheritance relationship among these classes. After the diagram, the
specifications for these classes are arranged in aphabetical order.

2-2 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSArray NSMutableArray

—| NSAssertionHandler '
NSAutoreleasePool

NSBTreeBlock
NSBTreeCursor
NSBundle

NSByteStore NSByteStoreFile
- NSCharacterSet !—| NSMutableCharacterSet [y
NSCoder NSArchiver

NSConditionLock NSUnarchiver

NSConnection

NSData NSMutableData
NSDate NSCalendarDate

NSDeserializer

NSObject Ir NSDictionary NSMutableDictionary

NSEnumerator

i

NSException
NSInvocation
NSLock
NSMethodSignature

NSNotification

IIIIII{

NSProxy !—' NSDistantObject !

NSProcesslInfo
NSRecursiveLock

NSRunLoop
NSScanner

NSSerializer

NSSer
NSSiing
NSThread
NSTimeZone
NSTimer

NSUserDefaults

NSValue NSNumber

I
=l z
[} 0
z|llz
2(H2
= =
o o
2102
N E
HIE
1 E
a2
ol

Figure 2-1. Foundation Kit Classes

OpenStep Specification—10/19/94

Classes: Foundation Kit

2-3

NSArchiver

Inherits From: NSCoder : NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSArchiver.h

Class Description

NSATrchiver, a concrete subclass of NSCoder, defines an object that encodes Objective C objectsinto an
architecture-independent format that can be stored in afile. When objects are archived, their classinformation and
thevaluesof their instance variablesarewritten to the archive. NSArchiver'scompanion class, NSUnarchiver, takes
an archive file and decodes its contents into a set of objects equivalent to the original one.

Archiving istypically initiated by sending an NSArchiver an encodeRootObject: or archiveRootObject:toFile:
message. These messages specify asingle object that isthe starting point for archiving. The root object receivesan
encodeWithCoder: message (see the NSCoding protocol) that allowsiit to begin archiving itself and the other
objectsthat it’s connected to. An object responds to an encodeWithCoder : message by writing its instance
variables to the archiver.

An object doesn't have to archive the values of each of itsinstance variables. Some values may not be important to
reestablish and others may be derivable from related state upon unarchiving. Other instance variables should be
written to the archive only under certain conditions, as explained below.

NSArchiver overrides the inherited encodeRootObj ect: and encodeConditional Object: methods to support the
conditional archiving of members of agraph of objects. When an object receives an encodeWithCoder : message,
it should respond by unconditionally archiving instance variablesthat areintrinsic to its nature (with the exceptions
noted above) and conditionally archiving those that arenot. For example, an NSView unconditionally archivesits
array of subviews (using encodeObject:, or the like) but conditionally archives its superview (using
encodeConditional Object:). The archiving system notes each reference to a conditional object, but doesn’t
actually archive the object unless some other object in the graph requests the object to be archived unconditionally.
This ensures that an object is only archived once despite multiple references to it in the object graph. When the
objects are extracted from the archive, the multiple references to objects are resolved, and an equivalent graph of
objectsis reestablished.

Initializing an NSArchiver

— (id)initFor WritingWithM utableData: (NSMutableData *)mdata
Initializes an archiver, encoding stream and version
information into mutable data mdata. Raises
NSInvalidArgumentException if the mdata argument is
nil.

2-4 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Archiving Data

+ (NSData *)ar chivedDataWithRoot Obj ect: (id)rootObject
Creates and returns a data object after initializing an
archiver with that object and encoding the archiver with

rootObject.
+ (BOOL)ar chiveRootObject: (id)rootObject Archives rootObject by encoding it as adata object in
toFile: (NSString *)path an archiver and writing that data object to file path.

Returns Y ES upon success.

— (void)encodeArrayOfObjCType: (const char *)type Encodes an array of count data elements of the same
count: (unsigned int)count Objective C data type.
at:(const void *)array

— (void)encodeConditional Object: (id)object Encodesinto the linearized data a conditional object that
points back toward aroot object. If nil is specified for
object, it encodesit as nil unconditionally. Raises an
NSInvalidArgumentException if no root object has
been encoded.

— (void)encodeR oot Obj ect: (id)rootObject Encodes the rootObject at the start of the linearized data
representing the object graph. Raises an
NSInvalidArgumentException if the root object has
already been encoded.

Getting Data from the NSArchiver

— (NSMutableData *)ar chiver Data Returns the data object, in mutable form, that is associated
with the receiving NSArchiver.

Substituting One Class for Another

— (NSString *)classNameEncodedFor TrueClassName: (NSString *)trueName
Returns the class name used to archive instances of the
class trueName. See
encodeClassName:intoClassName.

— (void)encodeClassName: (NSString *)trueName Encodes in the archive a substitute class name
intoClassName: (NSString *)inArchiveName) for the real class name (trueName).

OpenStep Specification—10/19/94 Classes: NSArchiver 2-5

NSArray

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class Description

The NSArray class declares the programmatic interface to an object that manages an immutable array of objects.
(The complementary class NSMutableArray manages modifiable arrays of objects.) NSArray’s two primitive
methods—count and obj ectAtl ndex:—provide the basis for all the other methods in its interface. The count
method returns the number of elementsin the array. objectAtlndex: gives you access to the array elements by
index, with index values starting at 0.

The methods objectEnumer ator and rever seObjectEnumerator aso permit sequential access of the elements of
the array, differing only in the direction of travel through the elements. These methods are provided so that array
objects can be traversed in a manner similar to that used for objects of other collection classes, such as
NSDictionary.

Generally, you instantiate an NSArray by sending one of the array... messagesto the NSArray class object. These
methods return an NSArray containing the elements you passin as arguments. (Note that arrays can’t contain nil
objects.) These objects aren’'t copied; rather, each object receives aretain message before it's added to the array.
When an object is removed from an array, it's sent arelease message.

NSATrray provides methodsfor querying the elements of the array. indexOfObj ect: searchesthearray for the object
that matches its argument. To determine whether the search is successful, each element of the array is sent an
isEqual: message, as declared in the NSObject protocol. Another method, indexOfObjectldentical To:, is
provided for the less common case of determining whether a specific object is present in the array.
indexOfObjectl dentical To: tests each element in the array to see whether itsid matches that of the argument.

NSArray’s makeObj ectsPer for m: and makeObj ectsPer for m:withObject: methods|let you act on theindividual
objectsin the array by sending them messages. To act on the array as awhole, avariety of methods are defined.
You can create a sorted version of the array (sortedArrayUsingSelector: and
sortedArrayUsingFunction:context:), extract a subset of the array (subarrayWithRange:), or concatenate the
elements of an array of NSString objects into asingle string (componentsJoinedByString:). In addition, you can
compare two array objects using the isEqual ToArray: and fir stObject CommonWithArray: methods.

2-6 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Allocating and Initializing an Array
+ (id)allocWithZone: (NSZone *)zone
+ (id)array
+ (id)arrayWithObj ect: (id)anObject

+ (id)arrayWithObjects: (id)firstObyj,...

— (NSArray *)arrayByAddingObj ect: (id)anObject

Returns an uninitialized array object in zone.
Returns an empty array object

Returns an NSArray containing the single element
anObject. Raises an NSInvalidArgumentException if
anObject isnil.

Returnsan NSArray containing the objectsin the argument
list. The object list is comma-separated and ends with
nil.

Returns an NSArray containing the receiver’s elements
plus anObject.

— (NSArray *)arrayByAddingObjectsFromArray: (NSArray *)another Array

— (id)initWithArray:(NSArray *)anotherArray

— (id)initWithObjects: (id)firstObj,...

— (id)initWithObjects:(id *)objects
count: (unsigned int)count

Querying the Array
— (BOOL)containsObj ect: (id)anObject

— (unsigned int)count

— (unsigned int)indexOfObj ect: (id)anObject

Returns an NSArray containing the receiver’s elements
plus the elements from anctherArray.

Initializesanewly allocated array object by placinginit the
objects contained in another Array.

Initializesanewly allocated array object by placinginit the
objectsin the argument list. The object list is
comma-separated and ends with nil. Raises an
NSInvalidArgumentExceptionif any object inthelist of
objectsisnil.

Initializes a newly alocated array object by placing in
it count objects from the objects array

Returns YES if anObject is present in the array.
Returns the number of objects currently in the array.

Returnstheindex of anObject, if found; otherwise, returns
NSNotFound. This method checks the elementsin the
array from last to first by sending them anisEqual:

message.

— (unsigned int)indexOfObj ectl dentical To: (id)anObject

— (id)lastObj ect

OpenStep Specification—10/19/94

Returnstheindex of anObject, if found; otherwise, returns
NSNotFound. This method checks the elementsin the
array from last to first by comparing their ids.

Returns the last object in the array.

Classes: NSArray 2-7

— (id)objectAtIndex: (unsigned int)index Returns the object located at index. An array’sindex starts
at 0. Raises an NSRangeException if index is beyond
the end of the array.

— (NSEnumerator *)objectEnumer ator Returns an enumerator object that lets you access each
object in the array, starting with the first element.

— (NSEnumerator *)rever seObjectEnumer ator Returns an enumerator object that lets you access each
object in the array, from the last element to the first.

Sending Messages to Elements

— (void)makeObjectsPer for m: (SEL)aSelector Sends an aSelector message to each object in the array.
— (void)makeObjectsPer for m: (SEL)aSel ector Sends an aSelector message to each object in the
withObj ect: (id)anObject array, with anObject as an argument.

Comparing Arrays

— (id)fir stObjectCommonWithArray:(NSArray *)other Array
Returns the first object from the receiver’s array that’s
equal to an object in otherArray.

—(BOOL)isEqualToArray:(NSArray *)otherArray Compares the receiving array object to other Array.

Deriving New Arrays

— (NSArray *)sortedArrayUsingFunction: (int(*)(id elementl, id element2, void * user Data))comparator
context: (void *)context Returns an array listing the receiver’s elementsin
ascending order as defined by the comparison function
comparator. context is passed to the comparator
function asits third argument.

— (NSArray *)sortedArrayUsingSelector : (SEL)comparator
Returns an array listing the receiver's elementsin
ascending order, as determined by the comparison
method specified by the selector comparator.

— (NSArray *)subarrayWithRange: (NSRange)range Returnsan array containing thereceiver’selementsthat fall
within the limits specified by range.

Joining String Elements

— (NSString *)componentsJoinedByString: (NSString *)separator
Returns a string that’s the result of interposing separator
between the elements of the receiver's array.

2-8 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Creating a String Description of the Array

— (NSString *)description Returns a string object that represents the contents of the
receiver.

— (NSString *)descriptionWithL ocale: (NSDictionary *)localeDictionary
Returns a string representation of the NSArray object.
Included are the key and valuesthat represent thelocale
data from localeDictionary.

— (NSString *)descriptionWithL ocale: (NSDictionary *)localeDictionary
indent: (unsigned int)level Returns a string representation of the NSArray object.
Included arethe key and valuesthat represent thelocale
data from localeDictionary. Elements of the array are
indented from the left margin by level + 1 multiples of
four spaces, to make the output more readable.

OpenStep Specification—10/19/94 Classes: NSArray 2-9

NSAssertionHandler

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSExceptions.h

Class Description

An assertion isastatement about conditions during the execution of program code, such astherelationship between
variables, the state of aboolean variable, the value of an expression, and so on. If the statement about the conditions
provesfalse, the assertion issaid to havefailed, and usually some action must be taken to report the failed assertion.
Application programmers wishing to provide more detailed control over assertion failures than provided by the
macros defined below would use the methods of NSAssertionHandler to report assertion failures.

NSAssertionHandler provides a mechanism whereby each distinct thread of execution can have a separate handler
to deal with failed assertionsin code. The fileName and line arguments to the methods described below can be
obtained by usingthe FILE and LINE macrosthat are pre-defined in the C pre-processor.

The Foundation/NSExceptions.h header file contains a collection of macrosthat can be used to state assertions
within methods, and contains a parallel collection of macros that can be used to state assertions within regular C
functions. If the condition tested in any of these macros fails, the current assertion handler is invoked with one of
the methods defined below, depending on whether the macro is one of the NSAssertN or one of the NSCA ssertN
macros. Separate macros have from 1 to 5 arguments. Macros for dealing with assertion failures within methods
are

NSAssertl
NSAssert2

condition, description, argumentl) ;
condition, description, argumentl, argument2);

NSAssert4
NSAssert5 (condition, description, argumentl, argument2, argument3, argument4, arguments);

(
(

NSAssert3 (condition, description, argumentl, argument2, argument3);
(condition, description, argumentl, argument2, argument3, argumenti) ;
(

In each case, condition is the statement to be tested (for example, index < length), description is a description of
the reason for the failure (in the form of a printf-style format NSString), and each argN is an argument to be
formatted according to the description string.

The parallel set of macros for dealing with failed assertions from within C functions have names of the form
NSCAssertN instead of NSAssertN. The arguments are otherwise the same as the NSAssertN macros.

Getting the Current Handler

+ (NSAssertionHandler *)currentHandler Returns the assertion handler for the current thread.

2-10 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Handling Failures

— (void)handleFailurel nFunction: (NSString *)functionName

file:(NSString *)fileName Logs an error message that includes functionName;
lineNumber:(int)line the source file fileName and the line number where
description: (NSString *)format,... the failure occured; and a short description of the

failure, described by format. It then raises an
NSInternal I nconsi stency Exception.

— (void)handleFailurel nM ethod: (SEL)sel ector Logs an error message that includes the method (selector)
object: (id)object and object associated with the failure;
file:(NSString *)fileName the source file fileName and
l[ineNumber: (int)line line number in that file where the failure occured;
description: (NSString *)format,... and a short description of the failure, described by

format. It then raises an
NSl nternal | nconsi stency Exception.

OpenStep Specification—10/19/94 Classes: NSAssertionHandler 2-11

NSAutoreleasePool

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSAutoreleasePool .h

Class Description

The Foundation Kit uses the NSAutorel easePool class to implement NSObject’s autor elease method. An
autorelease pool simply contains other objects, and when deall ocated, sends a r el ease message to each of those
objects. An object can be put into the same pool several times, and receives ar elease message for each timeit was
put into the pool.

You use autorel ease pools to limit the time an object remains valid after it's been “autoreleased” (that is, after it's
been sent an autor elease message or has otherwise been added to an autorelease pool). Autorel ease pools are
created using the usual alloc and init messages, and disposed of with release. An autorelease pool should aways
be released in the same context (invocation of a method or function, or body of aloop) that it was created. You
should never send retain or autor elease messages to an autorel ease pool.

Autorelease poolsare automatically created and destroyed in OpenStep applications, so your code normally doesn’t
have to worry about them. There are two cases, though, where you should explicitly create and destroy your own
autorelease pools. If you're writing a program that’s not based on the Application Kit, such asaUNIX tool, there’s
no built-in support for autorelease pools; you must create and destroy them yourself. Also, if you need to write a
loop that creates many temporary objects, you should create an autorelease pool in the loop to prevent too long a
delay in the disposal of those objects.

Enabling the autorel ease feature in aprogram that’s not based on the Application Kit is easy. Many programs have
atop-level loop where they do most of their work. To enable the autorel ease feature you create an autorel ease pool
at the beginning of this loop and release it at the end. An autor elease message sent in the body of the loop
automatically putsits receiver into this pool. The main() function might look like this:

2-12 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

int main(int argc, char *argv[])

{

int 1i;

/* Do whatever setup is needed. */

for (i = 0; i < argc; i++) {
NSAutoreleasePool *pool;
NSString *fileContents;

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

fileContents = [[[NSString alloc] initWithContentsOfFile:argv([i]] autoreleasel];
processFile (fileContents) ;

[pool releasel;

}

/* Do whatever cleanup is needed. */
exit (EXIT_ SUCCESS) ;

}

Any object autoreleased inside the for loop, such asthefileContents string object, isadded to pool, and when pool
isreleased at the end of the loop those objects are also rel eased.

Note that autorel easing doesn’t work outside of theloop. Thisisn’t aproblem, sincethe program terminates shortly
after the loop ends, and memory leaks aren’'t usually serious at that stage of execution. Your cleanup code shouldn’t
refer to any objects created inside the loop, though, since they may be autoreleased in the loop and therefore
released as soon asit ends.

Nesting Autorelease Pools

You may need to manually create and destroy autorel ease pools even in an application that usesthe Application Kit
if you writeloopsthat create many temporary objects. For example, if you write aloop that iterates 1000 times and
invokes a method that creates 15 temporary objects, those 15,000 objects will remain until the application’s
autorelease pool is deallocated, possibly well after they’re no longer needed.

You can create your own autorel ease pools within the loop to prevent these unwanted objects from remaining
around. Autorel ease pools nest themselves on a per-thread basis, so that if you create your own pool, it adds itself
to the application’s default pool, forming a stack of autorelease pools. Likewise, if you create another pool (within
anested loop, perhaps), it addsitself to thefirst pool you created. autor elease automatically adds its receiver to the
last pool created, creating a nesting of autorel ease contexts. The implications of this are described bel ow.

OpenStep Specification—10/19/94 Classes: NSAutoreleasePool 2-13

A method that creates autorel ease pools looks much like the main() function given above:

- (void)processString: (NSString *)aString

{

int i;

for (i = 0; i < 1000; i++) {
NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];
NSString *thisLine;

thisLine = [self lineNumbered:i fromString:aString];
/* Do some work with thisLine. */
[subpool releasel];

}

return;

}

If you assumethat [ineNumbered:fromString: returns a string object that’s been autorel eased while subpool isin
effect, that object is released with subpool at the end of the loop. The work involving thisLine may create other
temporary objects, which are also released at the end of theloop. None of these objects remains outside of thisloop
or the processString: method (unless they’ve been retained).

Note that because an autorel ease pool addsitself to the previous pool when created, it doesn’t cause amemory leak
in the face of an exception or other sudden transfer out of the current context. If an exception occurs in the above
loop, or if thework in the loop involvesimmediately returning or breaking out of the loop, the sub-pool isreleased
by the application’s default pool (or whatever pool wasin effect before the sub-pool was created), “unwinding” the
autorel ease-pool stack up to the one that’s supposed to be active.

Guaranteeing the Foundation Ownership Policy

By manually creating an autorel ease pool, you reduce the potential lifetime of temporary objects to the lifetime of
that pool. After an autorelease pool is deallocated, you should regard as “ disposed of” any object that was
autoreleased while that pool was in effect, and not send a message to that object or return it to the invoker of your
method. This method, for example, isincorrect:

- findMatchingObject:anObject
{
id match = nil;
while (match == nil) {
NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

/* Do some searching that creates a lot of temporary objects.*/

match = [self expensiveSearchForObject:anObject] ;
[subpool releasel];
}
/* Danger!! The match object may not exist at this point! */
[match setIsMatch:YES forObject:anObject];
return match;

2-14 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

expensiveSear chFor Object: isinvoked while subpool isin effect, which meansthat match, which may have been
autoreleased, isreleased at the bottom of the loop. Sending setl sMatch:for Object: after the loop could cause the
application to crash. Similarly, returning match allows the sender of findM atchingObject: to send a message to
it, also causing your application to crash.

If you must pull atemporary object out of anested autorel ease context, you can do so by retaining the object within
the context and then autoreleasing it after the pool has been released. Here's a correct implementation of
findM atchingObject::

- findMatchingObject:anObject

{
id match = nil;
while (match == nil) {
NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

/* Do a search that creates a lot of temporary objects. */

match = [self expensiveSearchForObject:anObject];
if (match != nil) [match retain]; /* Keep match around. */

[subpool releasel];

}

[match setIsMatch:YES forObject:anObject];
return [match autorelease] ; /* Let match go and return it. */

}

By retaining match while subpool isin effect and autoreleasing it after the subpool has been released, match is
effectively moved from subpool to the pool that was previoudly in effect. Thisgivesit alonger lifetime and allows
it to be sent messages outside the loop and to be returned to the invoker of findM atchingObject:.

General Exception Conditions

An NSInvalidArgumentException is raised on any attempt to send either retain or autor elease messages to an
autorelease pool object.

Adding an Object to the Current Pool
+ (void)addObj ect: (id)anObject Adds anObject to the active autorel ease pool in the current

thread.

Adding an Object to a Pool
— (void)addObj ect: (id)anObject Adds anObject to the receiver.

OpenStep Specification—10/19/94 Classes: NSAutoreleasePool 2-15

NSBTreeBlock

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

An NSBTreeBlock provides ordered, associative storage and retrieval of untyped data. It identifies and orders data
items, called values, by key, using a comparator function. A companion class, NSBTreeCursor, actually

mani pul ates the contents of the NSBTreeBlock; NSBTreeBlock only provides the mechanisms for storing and
sorting the key/value pairs.

Setting Up an NSBTreeBlock

An NSBTreeBlock can be used with either a memory-based NSByteStore or an NSByteStoreFile. The
NSByteStore holds the contents of the NSBTreeBlock. Use NSBTreeBlock with NSByteStoreFile to build
persistent databases. An NSBTreeBlock isinitialized as a new client of an NSByteStore using the method
initWithStore: or initWithStore:block:. The NSBTreeBlock takes up one block inthe NSByteStore per key/value
pair and one block for each node in the tree. An NSBTreeBlock will always take up at least one block in the
NSByteStore.

After the NSBTreeBlock has been initialized, it must have its comparator function set with the

setCompar ator:context:. A comparator function takes as arguments two pieces of arbitrary dataand their lengths
and returns an integer indicating their ordering relative to one another. A comparator function is of type
(NSBTreeComparator *), which has the form:

typedef int NSBTreeComparator (NSData * datal, NSData * data2, const void *context)

where datal and data2 are pointersto dataand context isapointer to blind datathat may be used by the comparator
function. The comparator function returns anumber lessthan 0 if datal is considered less than data2, greater than
0if datal is considered greater than data2, and equal to O if datal and data2 are considered equal. By default,
NSBTreeBlocks compare keys as strings.

Getting Data Into and Out of an NSBT reeBlock

Asstated above, NSBTreeBlock simply providesthe capacity for associative storage. An NSBTreeCursor isneeded
to take advantage of that capacity. An NSBTreeCursor is like a pointer into the NSBTreeBlock: It can move to
specific positions within the key space and perform operations on the values stored at those locations, independent
of other cursors. See the NSBTreeCursor class description for more information.

2-16 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Multiple NSBTreeCursors may independently access a single NSBTreeBlock. The actions of one cursor don’'t
affect any of the other cursorsin the NSBTreeBlock, except to the extent that they modify the contents of the
NSBTreeBlock. It is both safe and meaningful to remove arecord that another NSBTreeCursor has just located, as
long as the code using the other NSBTreeCursor anticipates this possibility, as described bel ow.

In the case of one cursor removing avalue that another cursor has just located, the second cursor will have received
an indication from akey-locating method (for example, moveCur sor ToK ey:) that it hasfound akey. When it tries
to access the value associated with that key, however, the key may no longer exist. The cursor will detect the
deletion and slide forward to the next available key if asked to read the value, or it will raise an exception if asked
to remove or write the value. If your code allows multiple cursors to be concurrently activein asingle
NSBTreeBlock, it must anticipate this behavior by handling the exceptions that may be raised and by comparing
the key against the expected value after invoking cur sorKey. If one cursor is pointed at akey and a second cursor
removes or adds akey at a different location, it does not change the position of the first cursor.

Working With the NSByteStore

Since NSBTreeBlock is an NSByteStore client, the transaction model of NSByteStore appliesto changes made to
the contents of an NSBTreeBlock. In particular, you must send the commitTransaction message to the
NSByteStore to have changes to the NSBTreeBlock take effect (and be flushed to disk for afile-based store). If an
NSBTreeBlock is used on a strictly read-only basis, transaction management can be ignored.

After an abortTransaction, acursor may be pointing to akey that no longer exists. Therefore, you must reposition
each cursor using one of the moveCur sor... methods after an abortTransaction.

Creating and Initializing a New NSBTreeBlock Instance

+ (NSBTreeBlock *)btreeBlockWithStore: (NSByteStore *)aStore
Returns a new NSBTreeBlock instance in the designated
NSByteStore.

+ (NSBTreeBlock *)btreeBlockWithStore: (NSByteStore *)aStore
block: (unsigned)aBlock Returns a new NSBTreeBlock instance in the designated
NSByteStore with aBlock as the root block of the
NSBTreeBlock. If aBlock does not exist or isinvalid,
the NSBTreel nitException is raised.

—(id)initWithStor e: (NSByteStore *)aSore
Initializesanewly allocated NSBTreeBlock instancein the
designated NSByteStore.

—(id)initWithStore: (NSByteStore *)aStore
block: (unsigned)aBlock Initializesanewly allocated NSBTreeBlock instancein the
designated NSByteStore with aBlock as the root block
of the NSBTreeBlock. If aBlock does not exist or is
invalid, the NSBTreel nitException is raised.

OpenStep Specification—10/19/94 Classes: NSBTreeBlock 2-17

Accessing Information About the NSByteStore

— (NSByteStore *)byteStore Returns the NSByteStore associated with the
NSBTreeBlock.
— (unsigned)storeBlock Returnsthe number of the NSByteStore block that contains

the root of the NSBTreeBlock.

Setting the Comparator

— (void)setCompar ator : (NSBTreeComparator *)comparator
context: (const void *)context Sets the comparison method. The default is string
comparison. When avaueisinserted in the
NSBTreeBlock, the comparator function decideswhere
to put it. For more information, see the class

description.
Accessing NSBTreeBlock information
— (unsigned)count Returns the number of key/value pairs stored in the
NSBTreeBlock.
Affecting NSBTreeBlock Contents
— (void)removeAllObjects Removes all key/value pairs from the NSBTreeBlock.

2-18 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSBTreeCursor

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

An NSBTreeCursor provides access to the keys and values stored in an NSBTreeBlock. It's essentially a pointer
into the NSBTreeBlock’s key space, and may be positioned by key to perform operations on the value stored at a
given location.

An NSBTreeCursor works with a single NSBTreeBlock, but several NSBTreeCursors may access the same
NSBTreeBlock and be positioned independently without conflict. See the NSBTreeBlock class specification for
more information on concurrent access with multiple NSBTreeCursors.

Positioning the Cursor and Accessing Data

NSBTreeCursor contains methods that walk through the key/value pairs in the NSBTreeBlock. The method
moveCur sor ToFirstKey will point the cursor to the first key in the key space, and you can use

moveCur sor ToNextK ey to essentially walk through all of the keysinthe NSBTreeBlock. To point the cursor at a
specific key/value pair, use moveCur sor ToK ey:. Thismethod returns Y ESif it findsthe key and NOif it does not.
If moveCur sor ToK ey: returns NO, it till pointsthe cursor at that key. For example, suppose the keysinto the key
space are integer IDs divisible by 10, and you call moveCur sor ToK ey: with 54 as the key. (In reality, keys must
be NSData objects, but to make this example more clear, it usesintegers.) Thereisno key 54, so

moveCur sor ToK ey: returns NO, but the cursor pointsto where key 54 would be if it existed. A subsequent call to
moveCur sor ToNextK ey would point the cursor at key 60. The method isOnK ey tellsyou if the cursor is pointing
to avalid key.

Toinsert akey/value pair into the NSBTreeBlock, you take advantage of the moveCur sor ToK ey: method’s return
value. Send moveCur sor ToK ey: with the key you want to insert. If if returns NO, send writeValue: with the value
you want to insert. The key/value pair will be inserted.

A cursor at aposition with no key can’t access avalue there. If the cursor is asked to access a value anyway, it has
two options: try to find avalue or indicate that it can’t access one. Where it makes sense, a cursor should try to find
avalue by dliding forward in the key space to the next actual key. When thisisn’t possible or desirable, the cursor
should indicate that it can’t find or access a value, by raising the NSBTreeNoVal ueException exception. In the
previousexample, if the cursor isasked to retrieve theinformation at key 54, the cursor will slideforward and return
theinformation at key 60. At this point, you can use the cur sor Key method to find out which key the cursor is
pointing to. cur sor Key will return 60 to let you know that the cursor has slid forward.

OpenStep Specification—10/19/94 Classes: NSBTreeCursor 2-19

A cursor cannot write inside (with the method writeValue:range:) or remove the value (with the method
removeValue) at alocation where there is no key. Since thereis no value, and since writing into part of avalue or
removing it would change data that the programmer probably doesn’t want altered (namely, the value for the next
actual key), the NSBTreeCursor will indicate that there is no value to write into by raising the
NSBTreeNoValueException exception.

Working With the NSByteStore

Since NSBTreeBlock is an NSByteStore client, the transaction model of NSByteStore appliesto changes madeto
the contents of an NSBTreeBlock. In particular, you must send the commitTransaction message to the
NSByteStore to have changes to the NSBTreeBlock take effect (and be flushed to disk for afile-based store). If an
NSBTreeBlock is used on a strictly read-only basis, transaction management can be ignored.

After an abortTransaction, acursor may be pointing to akey that no longer exists. Therefore, you must reposition
each cursor using one of the moveCur sor... methods after an abortTransaction.

Creating and Initializing a New NSBT reeCursor Instance

+ (NSBTreeCursor *)bTreeCur sor WithBTree: (NSBTreeBlock *)aBTree
Returns a new NSBTreeCursor instance and associates it
with the aBTree object.

—(id)initWithBTree: (NSBTreeBlock *)aBTree Initializes a newly allocated NSBTreeCursor instance and
associates it with the aBTree object.

Obtaining Information about the NSBTreeBlock

— (NSBTreeBlock *)btree Returns the NSBTreeBlock with which the
NSBTreeCursor is associated.

Positioning the Cursor

— (BOOL)moveCursor ToFirstK ey Positions the cursor at the first key in the key space.

— (BOOL)moveCursor ToL astK ey Positions the cursor at the last key in the key space.

— (BOOL)moveCur sor ToNextK ey Positions the cursor at the next key in the key space. If the
cursor is at the last key, it does not move.

— (BOOL)moveCur sor ToPreviousK ey Positions the cursor at the previous key in the key space. If
the cursor is at the first key, it does not move.

— (BOOL)moveCursor ToK ey: (NSData *)key Positions the cursor at key.

—(BOOL)isOnK ey Returns YES if the cursor matched a key on the last
operation.

2-20 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Accessing the Data

— (NSDhata*)cur sor Key Returns the key that the cursor is pointing to.
— (NSData *)cur sor Value Returns the val ue associated with the key that the cursor is
pointing to.

— (NSData *)cur sor ValueWithRange: (NSRange)range
Returns a portion, specified by range, of the value

associated with the key that the cursor is pointing to.

Changing the Data in the NSBTreeBlock

— (BOOL)writeValue:(NSData *)value Replaces the value associated with the key that the cursor
ispointing to, if the key exists. If the key does not exist,
it creates anew key/value pair using the key that the
cursor is currently pointing to and value as the value.
This method returns Y ESif it inserted a new key/value
pair and NO if it overwrote an existing value.

— (void)writeValue: (NSData *)value Replacesaportion, starting at index, of the value associated
atl ndex: (unsigned)index with the key that the cursor is pointing to. If the key
does not exist, the NSBTreeNoValueException
exception is raised.

— (void)removeValue Deletes the key/value pair from the NSBTreeBlock. If the
key/value pair already does not exist, the
NSBTreeNoValueException exception is raised.

OpenStep Specification—10/19/94 Classes: NSBTreeCursor 2-21

NSBundle

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSBundle.h

Class Description

A bundle is a mechanism for grouping application resources into convenient chunks. A typical (but by no means
the only) application of abundleisto group executable code together with the resources used by that executable
code. A magjor use of bundlesisto handle |ocalization issues, as described below in “Localized Resources’.

An NSBundleis an object that correspondsto adirectory (or folder in the terminology of some operating systems)
where application resources are stored. The directory, in essence, “bundles’ a set of resources used by an
application, and the NSBundle object makes those resources available to the application. NSBundle is able to find
requested resources in the directory and, in some cases, dynamically load executable code. The term “bundle” is
used both for the object and for the directory it represents.

Bundled resources might include such things as:
» Images—TIFF or EPS (for instance) images used by an application’s user interface components
* Sounds
» Localized character strings
» Executable code

» User Interface resources—files describing the layout of user interface objects and their relationships with
other objects

Each resource within abundle usualy residesin a separate file.

Localized Resources

If an application isto be used in more than one part of the world, its resources may need to be customized, or
“localized”, for language, country, or cultural region. An application may need, for example, to have separate
Japanese, English, French, Hindi, and Swedish versions of the character strings that label menu commands.

2-22 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Resource files specific to a particul ar language are grouped together in a subdirectory of the bundle directory. The
subdirectory has the name of the language (in English) followed by a“.lIproj” extension (for “language project”).
The application mentioned above, for example, would have Japanese.lproj, English.lproj, French.lproj,
Hindi.lproj, and Swedish.lproj subdirectories.

Each “.Iproj” subdirectory in abundle has the same set of files; all versions of aresource file must have the same
name.

The Main Bundle

Every application is considered to have at |east one bundle—its main bundle—the directory where its executable
fileislocated. If the application is organized into afile package marked by a*“.app” extension, the file package is
the main bundle.

Other Bundles

An application can be organized into any number of other bundles in addition to the main bundle. For example, an
application for managing PostScript printers may have abundle full of PostScript code to be downloaded to
printers. These other bundles usually reside inside the application file package, but they can belocated anywherein
the file system. Each bundle directory is represented in the application by a separate NSBundle object.

By convention, bundle directories other than the main bundle end in a*“.bundle” extension.

Dynamically Loadable Classes

Any bundle directory can contain afile with executable code. For the main bundle, that file is the application
executable that'sloaded into memory when the application islaunched. The executablein the main bundleincludes
the main() function and other code necessary to start up the application.

Executable filesin other bundle directories hold class (and category) definitions that the Bundle object can
dynamically load while the application runs. When asked, the Bundle returns class objects for the classes (and
categories) stored in the file. It waits to load the file until those classes are needed.

By using a number of separate bundles, you can split an application into smaller, more manageable pieces. Each

pieceisloaded into memory only when the code being executed requiresit, so the application can start up faster

than it otherwise would. And, assuming userswill rarely exercise every part of an application, the application will
also consume less memory asit runs.

Thefilethat contains dynamically loadable code must have the same name as the bundle directory, but without the
“.bundle” extension.

Since each bundle can have only one executablefile, that file should be kept free of localizable content. Anything
that needs to be localized should be segregated into separate resource files and stored in “.lproj” subdirectories.

OpenStep Specification—10/19/94 Classes: NSBundle 2-23

Working with Bundles

Generally, you instantiate a bundle object by sending one of the bundleFor Class:, bundleWithPath:, or
mainBundle methods to the NSBundle class object. mainBundle gives you the NSBundle object corresponding
to the directory containing the application’s executable.

Initializing an NSBundle

— (id)initWithPath: (NSString *)path

Getting an NSBundle
+ (NSBundle *)bundleFor Class:. (Class)aClass

+ (NSBundle *)bundleWithPath: (NSString *)path

+ (NSBundle *)mainBundle

Getting a Bundled Class
— (Class)classNamed: (NSString *)className

— (Class)principalClass

Finding a Resource

+ (NSString *)pathFor Resour ce: (NSString *)name
of Type: (NSString *)ext
inDirectory: (NSString *)bundlePath
withVersion: (int)version

— (NSString *)pathFor Resour ce: (NSString *)name
of Type: (NSString *)ext

2-24 Chapter 2: Foundation Kit

Initializes a newly allocated NSBundle object to make it
the NSBundle for the path directory.

Returns the NSBundle object that dynamically loaded
aClass, or the main bundle object if aClass wasn't
dynamically loaded.

Returns an NSBundle object that’s initialized for the path
directory.

Returns the NSBundle object that corresponds to the
directory where the application executable is located.

Returns the class object for the className class, or nil if
className isn’'t one of the classes associated with the
receiver.

Returnsthe class object for thefirst classthat’'sdynamically
loaded by the NSBundle, or nil if the NSBundle can’t
dynamically load any classes.

Returns the path for the resource identified by name,
having the specified filename ext,
residing in bundlePath,
and having version number version.

Returns the path for the resource identified by name
having the specified filename extension ext.

OpenStep Specification—10/19/94

Getting the Bundle Directory
— (NSString *)bundlePath

Stripping Symbols
+ (void)stripAfter Loading: (BOOL)flag

Managing Localized Resources

Returns a string containing the full pathname of the
receiver’'s bundle directory.

Sets whether symbols are stripped when modules are
loaded. The default is YES. You would usually set flag
to NO for debugging purposes.

— (NSString *)localizedStringFor Key: (NSString *)key

value: (NSString *)value
table: (NSString *)tableName

Setting the Version

— (unsigned)bundleVersion

— (void)setBundleVer sion: (unsigned)version

OpenStep Specification—10/19/94

Returns alocalized version of the string designated by
key. tableName specifies the string table to search; if
tableName is NULL, thefile Localizable.stringsis
used. value specifies the value to return if the key or
table can’t be found (or if key isNULL).

Returnsthe version last set by the setBundleVersion:
method, or O if no version has been set.

Setsthe version that the NSBundlewill usewhen searching
“.lIproj” subdirectories for resource files.

Classes: NSBundle 2-25

NSByteStore

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

An NSByteStore object manages a single memory-based heap. Use NSByteStore to allocate storage in
data-intensive applications. Its main feature is transaction management, which makes compound operations atomic
and ensures data integrity.

You address the blocks of storage that an NSByteStore manages through unsigned integers called block numbers.
To gain access to the contents of a block, you first must open the block for reading or writing. When you open a
block, the NSByteStore resolves the block number into a pointer. While ablock is open, you can addressits
contents using the pointer and can safely assume that the block won’t move. Once you close the block, however,
the NSByteStore is free to move it in order to compact storage; so the pointer may becomeinvalid.

The contents of an NSByteStore are rel ocatable to and from other instances of NSByteStore and its subclasses.
Although the address of a block becomes invalid when the block is relocated, its block number remains constant.
Since block numbersareindirect referencesto data, it’s possible to retrieve the contents of an NSByteStore without
invalidating block number-based referential data structures residing in the NSByteStore, like linked lists or trees.
This makes it easy to copy complex structures or to quickly save them to afile.

A subclass of NSByteStore, NSByteStoreFile, stores datain afile so that you can retain data created and changed
by your application. For more information, see its class description.

Transactions

NSByteStore implementstransactions, allowing several operationsto be grouped together in such away that either
all of them take effect, or none of them do. Transactions help to ensure semantic integrity by making compound
operations atomic, and they provide a convenient way to undo a series of changes. If you use NSByteStoreFile, the
use of transactions also ensures dataintegrity against process and system crashes. This meansthat if a system loses
power, the NSByteStoreFile's contents can be recovered intact on power up, in the state they werein after the last
transaction that actually finished.

Transactions are either enabled or disabled for an object. Most likely, you will want to disable transactions for
NSByteStores (unless you want the undo capability) and enable them for NSByteStoreFiles. When transactions are
enabled, NSByteStore copies blocks that your application opens for writing. Thus, updates are slower when
transactionsare enabled. If you are using NSByteStore directly, its contents are always destroyed by asystem crash,
so the only advantage to using transactions is the undo capability. If you are using NSByteStoreFile, enabling
transactions may save some of the changes made before a system crash. Therefore, you should always use
transactions with NSByteStoreFile except if it contains data that can be easily reconstructed, such as an index.

2-26 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Using Transactions

A single transaction begins with a startTransaction message and ends with either acommitTransaction or
abortTransaction message. startTransaction enables transactions if they are disabled. Sending
commitTransaction meansyou want the changes made by thistransaction to take effect. abort Transaction means
you want to cancel the changes made by this transaction.

You can check whether transactions have been enabled with ar eTr ansactionsEnabled. You may want to do thisif
your codeisinvoked by higher level methodsthat determine the transaction management policy for the application.
For example, NSByteStore uses ar €Tr ansactionsEnabled to determine whether or not to invoke start Transaction
before responding to an empty message.

You can nest transactions. The first startTransaction message (or the first message that opens a block after
enableTransactions) startstransaction 1. If you send start Tr ansaction again before ending transaction 1, it begins
transaction 2, which is nested inside transaction 1. The nestingL evel method returns the current nesting level of
transactions. startTransaction also returns the nesting level asthe transaction’s ID.

The trick with nesting transactions is: the changes a transaction makes aren’t really made until the nesting level
returnsto 0. In other words, changes don’t actually take effect until the top-level transaction is committed. This
means that any blocks that any of the transactions have opened for writing will not be available until the all of the
transactions are finished. So, if you start atransaction at nesting level 2, make some changesto blocks 3, 5, and 7,
and then you send commitTransaction, all that commitTransaction really doesis set the nesting level to 1 and
tell transaction 1 about the changesto blocks 3, 5, and 7. If you then send commitTransaction at transaction 1,
commitTransaction setsthe nesting level to 0. Because the nesting level is now 0, the changes can take place.
Blocks 3, 5, and 7 are overwritten with the changes made during transaction 2 and are made available. If instead
you decide to abort transaction 1 (by sending abortTransaction), the changes transaction 2 made to blocks 3, 5,
and 7 are cancelled, aswell as any changestransaction 1 made to any blocks. In thisway, the parent of atransaction
can undo changes made by their children, but the children cannot undo the changes made by their parents.

Note that if your code makes changes outside any transaction while transactions are enabled, an enclosing
transaction is started automatically. The next invocation of startTransaction, if any, before an intervening abort or
commit, simply picks up this enclosing transaction and reports a nesting level of 1. Thus, if nesting isn’t needed,
your code can simply enable transactionsinitially with apair of startTransaction/commitTransaction messages,
and thereafter use only commitTransaction to mark transaction boundaries. New transactions implicitly begin
with the first modification following each commit.

Any modifications that haven’t been committed are aborted when an NSByteStore is freed.

Opening Blocks for Reading or Writing
When you open ablock for reading or writing, that block is unavailable until you specify that you are finished.

When you are finished reading ablock, you send closeBlock:. Any method that accessesinformation about a block
opens it for reading. This means not only does readBlock:range: open ablock for reading, but so does
sizeOfBlock:, which returnsthe block’s size. The copyBlock: method opensthe block for reading, but it also closes
it when finished (unless you aready had that block opened for reading). Even if you commit a transaction before
you send closeBlock:, the block remains open for reading.

OpenStep Specification—10/19/94 Classes: NSByteStore 2-27

Any method that changes a block’s contents opens the block for writing. This means not only does
openBlock:range: open ablock for writing, but so do the methods copyBytes:toBlock:range:,
createBlock OfSize:, and freeBlock:. You indicate that you are finished with ablock you have open for writing by
having its changes take effect. Closing the block with closeBlock: does not make your changes take effect, even if
transactions are disabled. Regardless of whether transactions are enabled or disabled, you must send
commitTransaction to have your changes actually be made.

If transactions are disabled, commitTransaction commits al the changes made to blocks since that last
commitTransaction or abortTransaction message was sent. abortTransaction cancels all the changes made

since the last commitTransaction.

Creating an NSByteStore

+ (NSByteStore *)byteStore

Managing the NSByteStore

— (unsigned)count

— (void)empty

— (void)getBlocks: (unsigned *)blocks

— (unsigned)rootBlock

Creating, Copying, and Freeing Blocks

— (unsigned)cr eateBlock Of Size: (unsigned)size

— (unsigned)copyBlock: (unsigned)aBlock

— (void)freeBlock: (unsigned)aBlock

2-28

range: (NSRange)range

Chapter 2: Foundation Kit

Returns a new NSByteStore with transactions disabled.

Returns the number of blocksin the NSByteStore at
transaction level 0. That is, if you have created or freed
some blocks but those changes have not been
committed at transaction level 0, count will not reflect
those changes.

Frees al blocks of memory in the NSByteStore. If
transactions are enabled, this method starts and
commits a new transaction.

Returnsin blocks a C-style array of block numbers at
transaction level 0. The caller must free the returned

array.

Returnsthe number of the root block, which by convention
isused as atable of contents or a directory.

Returns a block number for a new block of size byteswith
the contents initialized to zero. Creating a block with
sizeOisallowed.

Returns a block number for a new block whose size and
contents are identical to the memory region in block
aBlock specified by range.

Removes and frees the block aBlock.

OpenStep Specification—10/19/94

Opening and Closing Blocks

— (void *)openBlock: (unsigned)aBlock
range: (NSRange)range

— (const void *)readBlock: (unsigned)aBlock
range: (NSRange)range
— (void)closeBlock: (unsigned)aBlock
Managing Block Sizes
— (void)resizeBlock: (unsigned)aBlock
toSize: (unsigned)size

— (unsigned)sizeOfBlock: (unsigned)aBlock

Using Transactions

— (unsigned)startTransaction

— (void)abortTransaction

— (void)commitTransaction

—(BOOL)areTransactionsEnabled

— (unsigned)nestingL evel

— (unsigned)changeCount

OpenStep Specification—10/19/94

Opens for writing the memory region in block aBlock
specified by range. A pointer to the region is returned.

Opens for reading the memory region in block aBlock.
specified by range. A pointer to the region is returned.

Closes the block aBlock.

Resizes the block aBlock to size bytes. This
method may change the location of the block aswell.

Returns the size in bytes of the block aBlock.

Begins a new transaction, enabling transactions if
necessary, for the current context. This transaction will
be aborted or committed before all other outstanding
transactions. Returns a number that both identifies the
new transaction and indicates the number of
transactions outstanding.

Reverts the NSByteStore to the state it was in before the
last startTransaction message or the last
commitTransaction message. Any blocks that had
been opened are made available to other store contexts.

Commits al changes made to blocks opened since the last
startTransaction or the last commitTransaction and
closes those blocks. If transactions are disabled or the
nesting level becomes 0, this method makes all of the
changed blocks available to other contexts.

Returns YES if transactions are enabled for the
NSByteStore, NO if not. Transactions are enabled by
the method startTransaction.

Returns the number of transactions pending against the
NSByteStore.

Returnsthe number of changes madeto the NSByteStore's
contentssinceit wasinitialized. Thisnumber equalsthe
number of commitTransaction and abortTransaction
messages the NSByteStore has received.

Classes: NSByteStore 2-29

Changing the Contents

— (void)copyBytes:(const void *)newData Copies the series of bytes pointed to by newData into the
toBlock: (unsigned)aBlock memory region in block aBlock specified by range. This
range: (NSRange)range method will expand the block’s size if the datawill not

fit in the location specified by range.
— (NSData *)contentsAsData Creates a virtual memory image of the NSByteStore.

— (void)replaceContentsWithData: (NSData *)data Replaces the contents of the NSByteStore with virtual
memory image data. This method ignores and erases
any pending writes to the NSByteStore.

2-30 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSByteStoreFile

Inherits From: NSByteStore : NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

NSByteStoreFile is a subclass of NSByteStore that keeps its storage in a file. NSByteStoreFile guarantees the
integrity of stored data against process and system crashes when protected by transactions (described in the
NSByteStore class specification), provided that the physical mediaremainsintact.

When you create an NSByteStoreFile, you specify a storage file and open it for reading only or for both reading
and writing. The methods you use to access the contents of the file are implemented in NSByteStore.

To support the use of preconfigured files, a process using an NSByteStoreFile opened for reading only may freely
modify the NSByteStoreFile; all modified pages are reflected only in the address space of the process. The
modifications are never written to the file and are discarded when the NSByteStoreFile is freed.

Creating and Initializing an NSByteStoreFile Instance

+ (NSByteStore *)byteStor eFile: (NSString*)path
transactionsEnabled: (BOOL)enable
create:(BOOL)create
readOnly:(BOOL)readOnly

— (id)initWithPath: (NSString*)path
transactionsEnabled: (BOOL)enable
create:(BOOL)create
readOnly:(BOOL)readOnly

Accessing the Storage File

— (NSString *)storePath

OpenStep Specification—10/19/94

Creates and initializes an NSByteStoreFile with path asits
storagefile. If enableis Y ES, transactions are enabled.
If createis YES, thefile path is created. If readOnly is
YES, path is opened for reading. If readOnly isNO,
path is opened for reading and writing.

Initializes anewly allocated NSByteStoreFile with path as
its storage file. If enableis YES, transactions are
enabled. If createis YES, thefile path is created. If
readOnly is YES, path is opened for reading. If
readOnly isNO, path is opened for reading and writing.

Returns the path of the storage file.

Classes: NSByteStoreFile 2-31

Reducing Memory Consumption

— (void)compactUntilDate: (NSDate *)limitDate Removes free space by relocating blocks toward the origin
of the virtual address space defined by the
NSByteStoreFile. limitDate sets atime limit on this
operation. No limitDate allowsthe compaction to runto
completion.

2-32 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSCalendarDate

Inherits From: NSDate : NSObject

Conforms To: NSCoding, NSCopying (NSDate)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSCalendarDate is a public subclass of NSDate that defines concrete date objects. These objects have time zones
and format strings bound to them and are especially suited for representing and manipulating dates according to
western calendrical systems.

By drawing on the behavior of the NSTimeZone class, NSCalendarDate objects adjust their visible representations
toreflect their associated time zones. Because of this, you can track an NSCalendarDate object across different time
zones. You can also present date information from time-zone viewpoints other than the one for the current locale.

Each NSCalendarDate object also has a calendar format string bound to it. This format string contains
date-conversion specifiers that are very similar to those used in the standard C library function strftime(). By
reference to this format string, NSCalendarDate can interpret dates that are represented as strings conforming to
the format. Several methods allow you to specify formats other than the one bound to the object, and
setCalendar Format: lets you change the default format string for an NSCalendarDate object.

NSCalendarDate provides both class and instance methods for obtaining initialized objects. Some of these methods
allow you to initialize date objects from strings while others initialize objects from sets of integers corresponding
the standard time values (months, hours, seconds, etc.). Asaways, you are responsible for deall ocating any objects
obtained through an alloc... or copy... method.

To retrieve conventional elements of a date, use the methods of the form dayOfWeek, monthOfYear, and so on.
For example, dayOfWeek returns a number that indicates the day of the week (0 is Sunday). The monthOfYear
method returns a number from 1 to 12 that indicates the month.

NSCalendarDate provides several methods for representing dates as strings. These methods—description,
descriptionWithL ocale:, descriptionWithCalendar For mat:, and
descriptionWithCalendar For mat:timeZ one;:—take an implicit or explicit format string.

NSCalendarDate performs date computations based on western calendar systems, primarily the Gregorian. (The
algorithms are derived from public domain software described in “ Calendrical Calculations,” atwo-part series by
Nachum Dershowitz and Edward M. Reingold in Software—Practice and Experience).

OpenStep Specification—10/19/94 Classes: NSCalendarDate 2-33

General Exceptions

NSCalendarDate will raise NSInvalidArgumentException in the general case where numeric character stringsto
specify years, months, days, and so on, are not valid numbers.

Getting and Initializing an NSCalendar Date

+ (NSCaendarDate *)calendar Date Returns an NSCalendarDate initialized to the current date
and time.

+ (NSCalendarDate *)dateWithString: (NSString *)description
calendar For mat: (NSString *)format Returns an NSCalendarDate object initialized with the
date specified in description and interpreted according
the the conversion specifiersin format. Raises
NSInvalidArgumentException if the description and
format do not correspond exactly.

+ (NSCalendarDate *)dateWithString: (NSString *)description
calendar For mat: (NSString *)format Returns an NSCalendarDate object initialized with the date
locale: (NSDictionary *)dictionary date specified in description and interpreted according
the the conversion specifiersin format. String
components of the date are fetched from the locale
dictionary. Raises NSInvalidArgumentException if the
description and format do not correspond exactly.

+ (NSCaendarDate *)dateWithYear: (int)year Returnsan NSCalendarDate object initialized with integers
month: (unsigned int)month that specify ayear (which must include the
day: (unsigned int)day century), month, day, hour, minute, and second. Also
hour: (unsigned int)hour include atime-zone object or time-zone detail object
minute: (unsigned int)minute (aTimeZone) to have the date adjusted to a particular
second: (unsigned int)second locale. If you specify nil for atime zone,
timeZone:(NSTimeZone *)aTimeZone NSInvalidArgumentException is raised. (See

"Retrieving Date Elements,” below, for the proper
ranges of the date and time integers.)

— (id)initWithString: (NSString *)description Initializes and returns an NSCalendarDate object specified
by description in the international format for date
representation (YYYY-MM-DD HH:MM:SS
+ HHMM, where £ HHMM is an offset from GMT).

—(id)initWithString: (NSString *)description Initializes and returns an NSCalendarDate object specified
calendar For mat: (NSString *)format as astring object in description and interpreted
according to the extended strftime() date-conversion
specifiersin format. Raises
NSInvalidArgumentException if the description and
format do not correspond exactly.

2-34 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (id)initWithString: (NSString *)description
calendar Format: (NSString *)format
locale: (NSDictionary *)dictionary

— (id)initWithYear : (int)year
month: (unsigned int)month
day: (unsigned int)day
hour : (unsigned int)hour
minute: (unsigned int)minute
second: (unsigned int)second
timeZone:(NSTimeZone *)aTimeZone

Retrieving Date Elements

— (int)dayOfCommonEra

— (int)dayOfMonth

— (int)dayOfWeek

— (int)dayOfYear

— (int)hour OfDay

— (int)minuteOfHour

— (intymonthOfYear

— (int)secondOfMinute

— (int)year OfCommonEra

OpenStep Specification—10/19/94

Initializes and returns an NSCalendarDate object specified
asastring object in description and interpreted
according to the extended strftime date-conversion
specifiersin format. String components of the date are
fetched from the locale dictionary. Raises an
NSInvalidArgumentException if the description and
format do not correspond exactly.

Returns an NSCalendarDate object initialized with integers
that specify ayear (which must include the
century), month, day, hour, minute, and second. Also
include atime-zone object (aTimeZone) to have the
date adjusted for a particular locale. Raises an
NSInvalidArgumentException if you specify nil for a
time zone. (See "RetrievingDate Elements," below, for
the proper ranges of the date and time integers.)

Returns the number of days since the beginning of the
Common Era.

Returns the day of the month (1 through 31) of the
NSCalendarDate object.

Returns a number indicating the day of the week (0 [Sun]
through 6 [Sat]) of the NSCalendarDate object.

Returns a number indicating the day of the year (1 through
366) of the NSCalendarDate object.

Returns a number indicating the hour of the day (O through
23) of the NSCalendarDate object.

Returns a number indicating the minute of the hour (0
through 59) of the NSCalendarDate object.

Returns a number indicating the month of the year (1
through 12) of the NSCalendarDate object.

Returns a number indicating the second of the minute (0
through 59) of the NSCalendarDate object.

Returns a number indicating the year, including the
century, of the NSCalendarDate object.

Classes. NSCalendarDate 2-35

Providing Adjusted Dates

— (NSCalendarDate *)addYear : (int)year Returns an NSCalendarDate objects with the year, month,
month: (int)month day, hour, minute, and second offsets specified as
day: (int)day arguments and the correct time-zone detail object for
hour : (int)hour the computed date. These offsets are relative to the
minute: (int)minute object and can be positive or negative. This method
second: (int)second preserves“clock time” during transitions to and from

Daylight Savings Time and on leap years.

Getting String Descriptions of Dates

— (NSString *)description Returns a string description of the receiver’s date using the
default format string (%Y-%m-%d %H:%M:%S %z)
and the locale and time-zone information associated
with the receiver.

— (NSString *)descriptionWithCalendar For mat: (NSString *)for mat
Returns a string description of the receiver’'s date that is
formatted according to the conversion specifiersin
format and using the locale and time-zone detail
information associated with the receiver.

— (NSString *)descriptionWithCalendar For mat: (NSString *)format
locale: (NSDictionary *)locale Returns a string description of the receiver’'s date that is
formatted according to the conversion specifiersin
format, represented according to the local e information
inlocale, and adjusted according to thetime-zone detail
information associated with the receiver.

— (NSString *)descriptionWithL ocale: (NSDictionary *)locale
Returns a string description of the receiver’s date using the
default format string (%Y-%m-%d %H: %M :%S %z),
with information localized according to the locale
information in locale, and using the time zone
information associated with the receiver.

Getting and Setting Calendar Formats

— (NSString *)calendar For mat Returns the calendar format (a string of date-conversion
specifiers) for thereceiving object. The default calendar
format is*“ %Y-%m-%d %H:%M:%S %z".

— (void)setCalendar Format: (NSString * Yformat Setsthe calendar format for the receiving object to format.

2-36 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Getting and Setting Time Zones

— (void)setTimeZone: (NSTimeZone *)aTimeZone Sets the time-zone object associated with the
NSCalendarDate object to aTimeZone.

— (NSTimeZoneDetail *)timeZoneDetail Returns the NSTimeZoneDetail object associated with the
receiver.

OpenStep Specification—10/19/94 Classes: NSCalendarDate 2-37

NSCharacterSet

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSCharacterSet class declares the programmatic interface to objects that construct immutabl e descriptions of
character setsin the Unicode character encoding. Using NSCharacterSet objects, you can determineif agiven
Unicode character belongs to a specified set. See NSMutableCharacterSet for a class that constructs descriptions
of character setsthat can be modified dynamically. NSCharacterSet’s primitive methods are char acter | sMember :
and bitmapRepresentation. Subclasses of NSCharacterSet must implement these two methods.

NSCharacterSet objects can be thought of asloosely analogousto theis... macros (such asisupper ())availablein
the ctype collection of most standard C libraries. NSCharacterSet objects, however, offer much greater flexibility
in that you can dynamically construct your own custom character sets against which you can test characters.

Theterm “bitmap” in the descriptions below does not refer to “bitmap characters’ in the sense of screen fonts for
display. The “bitmaps’ referred to here are compact ordered bit set representations of Unicode character positions
or ranges of Unicode characters.

You create “standard” character sets—such as a set of alphanumerics, or a set of decimal digits—by invoking the
NSCharacterSet class object with one of the methods described in “ Creating a Standard Character Set”. These
methods provide convenient means to create a standard set without needing to specify the character positons
explicitly.

You can also create your own “custom” character sets by using one of the methods described under “ Creating a
Custom Character Set”. To create acharacter set with multiple digoint ranges, seethe add... methods described in
NSMutableCharacter Set.

Creating a Standard Character Set

+ (NSCharacterSet *)alphanumericCharacterSet Returns a character set containing the uppercase and
lowercase al phabetic characters (a—z, A—Z, other
aphabetic characters such as &, E, ¢, C, and so on) and
the decimal digit characters (0-9).

+ (NSCharacterSet *)controlChar acter Set Returns a character set containing the control characters
(characters with decimal Unicode values 0 to 31 and
127 to 159).

2-38 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

+ (NSCharacterSet *)decimal DigitChar acter Set Returns a character set containing only decimal digit
characters (0-9).

+ (NSCharacterSet *)decomposableCharacterSet Returns a character set containing all individual Unicode
characters that can also be represented as composed
character sequences.

+ (NSCharacterSet *)illegal Char acter Set Returns a character set containing the illegal Unicode
values.
+ (NSCharacterSet *)letter Char acter Set Returns a character set containing the uppercase and

lowercase al phabetic characters (a—z, A—Z, other
alphabetic characters such as é, E, ¢, C, and so on).

+ (NSCharacterSet *)lower casel etter Char acter Set
Returns a character set containing only lowercase
alphabetic characters (a—z, other alphabetic characters
such as €, ¢, and so on).

+ (NSCharacterSet *)nonBaseChar acter Set Returns a set containing all characters which are not
defined to be base characters for purposes of dynamic
character composition.

+ (NSCharacterSet *)upper casel etter Char acter Set
Returns a character set containing only uppercase
a phabetic characters (A—Z, other aphabetic characters
such asE, C, and so on).

+ (NSCharacterSet *)whitespaceAndNewlineChar acter Set
Returns a character set containing only whitespace
characters (space and tab) and the newline character.

+ (NSCharacterSet *)whitespaceChar acter Set Returns a character set containing only in-line whitespace
characters (space and tab). This set doesn't contain the
newline or carriage return characters.

Creating a Custom Character Set

+ (NSCharacterSet *)char acter SetWithBitmapRepresentation: (NSData *)data
Returns a character set containing characters determined
by the bitmap representation data.

+ (NSCharacterSet *)char acter SetWithCharacter sinString: (NSString *)aString
Returnsacharacter set containing the charactersinaString.
If aString is empty, an empty character set is returned.

astring must not be nil.

OpenStep Specification—10/19/94 Classes: NSCharacterSet 2-39

+ (NSCharacterSet *)char acter SetWithRange: (NSRange)aRange
Returns a character set containing characters whose
Unicode values are given by aRange.

Getting a Binary Representation

- a*)bitmapRepresentation urnsan aobject encoding thereceiving character

(NSData*)bitmapR tati Ret NSData object encoding th iving charact
set in binary format. Thisformat is suitable for saving
to afile or otherwise transmitting or archiving.

Testing Set Membership
— (BOOL)char acter | sMember : (unichar)aCharacter ReturnsY ESif aCharacter isinthereceiving character set,
NO ifitisn't.
Inverting a Character Set

— (NSCharacterSet *)invertedSet Returns a character set containing only characters that
don't exist in the receiver.

2-40 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSCoder

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSCoder.h

Foundation/NSGeometry.h

Class Description

NSCoder is an abstract class that declares the interface used by subclasses to take objects from dynamic memory
and code them into and out of some other format. This capability provides the basis for archiving (where objects
and other structures are stored on disk) and distribution (where objects are copied to different address spaces). See
the NSArchiver and NSUnarchiver class specifications for more information on archiving.

NSCoder operates on the basic C and Objective C types—int, float, id, and so on (but excluding void * and
union)—as well as on user-defined structures and pointers to these types.

NSCoder declares methods that a subclass can override if it wants:

» To encode or decode an object only under certain conditions, such asit being an intrinsic part of alarger
structure (encodeRootObj ect: and encodeConditional Object:).

» To allow decoded objects to be allocated from a specific memory zone (setObjectZone:).
» To alow system versioning (systemVersion).

NSCoder differs from the NSSerializer and NSDeserializer classes in that NSCoders aren’t restricted to operating
on property list objects (objects of the NSData, NSString, NSArray, and NSDictionary classes). Also, unlike
NSSerializers, NSCoders store type information along with the data. Thus, an object decoded from a stream of
bytes will be of the same class as the object that was originally encoded into the stream.

Encoding and Decoding Objects

In OpenStep, coding is facilitated by methods declared in several places, most notably the NSCoder class, the
NSObject class, and the NSCoding protocol.

The NSCoding protocol declares the two methods (encodeWithCoder: and initWithCoder:) that a class must
implement so that objects of that class can be encoded and decoded. When an object receives an
encodeWithCoder: message, it should send a message to super to encode inherited instance variables before it
encodestheinstancevariablesthat it’s class declares. For example, afictitious MapView classthat displaysalegend
and amap at various magnifications, might implement encodeWithCoder : like this:

OpenStep Specification—10/19/94 Classes: NSCoder 2-41

- (void)encodeWithCoder: (NSCoder *)coder

{

[super encodeWithCoder:coder] ;

[coder encodeValuesOfObjCTypes:"si@", &mapName, &magnification, &legendView];

}

Objects are decoded in two steps. First, an object of the appropriate classis alocated and then it’'s sent an
initWithCoder: messagesto allow it to initialize its instance variables. Again, the object should first send a
message to super to initialized inherited instance variables, and then it should initialize its own. MapView's
implementation of this method looks like this:

- (id) initWithCoder: (NSCoder *)coder

{

self = [super initWithCoder:coder];
[coder decodeValuesOfObjCTypes:"si@", &mapName, &magnification, &legendView];
return self;

}

Note the assignment of the return value of initWithCoder : to self in the example above. Thisisdonein the subclass
because the superclass, in itsimplementation of initWithCoder :, may decide to return a object other than itself.

There are other methodsthat allow an object to customizeits response to encoding or decoding. NSObject declares
these methods:

Method Typical Use

classForCoder: Allows an object, when being encoded, to substitute a class other than its own.
For example, the private subclasses of a class cluster substitute the name of
their public superclass when being archived.

replacementObjectForCoder: Allows an object, when being encoded, to substitute another object for itself.
For example, an object might encodeitself into an archive, but encode a proxy
for itself if it's being encoded for distribution.

awakeAfterUsingCoder: Allows an object, when being decoded, to substitute another object for itself.
For example, an object that represents a font might, upon being decoded,
release itself and return an existing object having the same font description as
itself. In this way, redundant objects can be eliminated.

See the NSObject class specification for more information.

2-42 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Encoding Data

— (void)encodeAr rayOfObj CType: (const char *)types

count: (unsigned int)count Encodes data of Objective C typeslisted in types having
at:(const void *)array count elements residing at address array.
— (void)encodeBycopyObj ect: (id)anObject Overridden by subclassesto encode the supplied Objective

C object so that a copy rather than a proxy of anObject
is created upon decoding. NSCoder’s implementation
simply invokes encodeObject:.

— (void)encodeConditional Object: (id)anObject Overridden by subclasses to conditionally encode the
supplied Objective C object. The object should be
encoded only if it isan intrinsic member of the larger
data structure. NSCoder’s implementation simply

invokes encodeObject:.

— (void)encodeDataObject: (NSData *)data Encodes the NSData object data.

— (void)encodeObj ect: (id)anObject Encodes the supplied Objective C object.

— (void)encodePropertyList:(id)aPropertyList Encodes the supplied property list (NSData, NSArray,
NSDictionary, or NSString objects).

— (void)encodePoint: (N SPoint)point Encodes the supplied point structure.

— (void)encodeRect: (NSRect)rect Encodes the supplied rectangle structure.

— (void)encodeRootObj ect: (id)rootObject Overridden by subclasses to start encoding an

interconnected group of Objective C objects, starting
with rootObject. NSCoder’s implementation simply
invokes encodeObject:.

— (void)encodeSize: (NSSize)size Encodes the supplied size structure.

— (void)encodeValueOfObjCType: (const char *)type Encodes data of the specified Objective C type
at:(const void *)address residing at address.

— (void)encodeValuesOfObj CTypes: (const char *)types,...
Encodes values corresponding to the Objective C types
listed in types argument list.

Decoding Data
— (void)decodeAr rayOfObj CType: (const char *)types

count: (unsigned)count Decodes data of Objective C types listed in type having
at:(void *)address count elements residing at address.

— (NSData *)decodeDataObj ect Decodes and returns an NSData object.

— (id)decodeObj ect Decodes an Objective C object.

OpenStep Specification—10/19/94 Classes: NSCoder 2-43

— (id)decodePropertyList

— (NSPoint)decodePoint

— (NSRect)decodeRect

— (NSSize)decodeSize

— (void)decodeValueOfObj CType:(const char *)type

at:(void *)address

Decodes a property list (NSData, NSArray, NSDictionary,
or NSString objects).

Decodes a point structure.
Decodes a rectangle structure.

Decodes a size structure.

Decodes data of the specified Objective C type residing at
address. You areresponsible for releasing the resulting
objects.

— (void)decodeValuesOfObj CTypes:(const char *)types,...

Managing Zones

— (NSZone *)objectZone

— (void)setObj ectZone: (NSZone *)zone

Getting a Version

— (unsigned int)systemVersion

Decodes values corresponding to the Objective C types
listed in types argument list. You are responsible for
releasing the resulting objects.

Returns the memory zone used by decoded objects. For
instances of NSCoder, thisisthe default memory zone,
the one returned by NSDefaultM allocZ one().

Sets the memory zone used by decoded objects. Instances
of NSCoder always use the default memory zone, the
one returned by NSDefaultM allocZone(), and so
ignore this method.

Returns the system version number as of the time the
archive was created.

— (unsigned int)ver sionFor ClassName: (NSString *)className

2-44

Chapter 2: Foundation Kit

Returns the version number of the class className as of
the time it was archived.

OpenStep Specification—10/19/94

NSConditionLock

Inherits From: NSObject
Conforms To: NSLocking

NSObject (NSObject)
Declared In: Foundation/NSL ock.h

Class Description
NSConditionL ock objects are used to lock and unlock threads when specified conditions occur.

The user of an NSConditionLock abject can lock when a process enters a particular state and can set the state to
something else when releasing the lock. The states are defined by the lock’s user. NSConditionLock iswell suited
to synchronizing different modules such as a producer and a consumer where the two modul es must share data, but
the consumer must sleep until a condition is met such as more data being available.

The NSConditionL ock class provides four ways of locking its objects (lock, lockWhenCondition:, tryL ock, and
tryL ockWhenCondition) and two ways of unlocking (unlock and unlockWithCondition:). Any combination of
locking method and unlocking method islegal .

The following example shows how the producer-consumer problem might be handled using condition locks. The
producer need not wait for acondition, but must wait for the lock to be made available so it can safely create shared
data. For example, a producer could use alock this way:

/* create the lock only once */
id condLock = [NSConditionLock new] ;

[condLock lock] ;
/* Manipulate global data... */
[condLock unlockWithCondition:HAS DATA] ;

Multiple consumer threads can then lock until there's data available and everyoneis out of locked critical sections.
In the following code sample, the consumer slegps until the producer invokes unlockWithCondition: with the
parameter HAS DATA:

[condLock lockWhenCondition:HAS DATA] ;
/* Manipulate global data if necessary... */
[condLock unlockWithCondition: (moreData ? HAS DATA : NO_DATA)];

An NSConditionLock object doesn't busy-wait, so it can be used to lock time-consuming operations without
degrading system performance.

The NSConditionLock, NSLock, and NSRecursivel ock classes all implement the NSL ocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

OpenStep Specification—10/19/94 Classes: NSConditionLock 2-45

Initializing an NSConditionLock

— (id)initWithCondition: (int)condition

Returning the Condition

— (int)condition

Acquiring and Releasing a Lock

— (void)lockWhenCondition: (int)condition

— (void)unlockWithCondition: (int)condition

— (BOOL)tryL ock

— (BOOL)tryL ockWhenCondition: (int)condition

2-46 Chapter 2: Foundation Kit

Initializes anewly created NSConditionLock and setsits
condition to condition.

Returns the receiver’s condition, the state that must be
achieved before a conditional lock can be acquired or
released.

Attempts to acquire alock when condition is met. Blocks
until condition is met.

Releases the lock and sets lock state to condition.

Attempts to acquire alock. Returns Y ES if successful and
NO otherwise.

Attempts to acquire alock when condition is met. Returns
YESif successful and NO otherwise.

OpenStep Specification—10/19/94

NSConnection

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSConnection.h

Class Description

The NSConnection class declares the programmatic interface to objects that manage a connection such that objects
in one thread can send messages to objects in another thread (typically, in another process, and it defines instances
that manage each side of such a connection.

Each distinct thread of execution has one default connection defined. Any given thread can have as many
connections as desired, but a given connection can be served by only one thread.

To set up aconnection, some object in your application must be established aswhat isknown asa*“root” object and
registered with a name in the Network Name Server. Such root objects can then be connected to by other threads,
and can receive messages sent to them from other threads. An easy way to establish an object as aroot object isto
send the defaultConnection method to the NSConnection class object to obtain a connection object. Then use
setRootObject: to establish the desired object as the object that will be registered, followed by register Name: to
make that object available to the Network Name Server under the specified name.

To obtain a connection to an object registered el sawhere, you will generally send the

rootProxyFor ConnectionWithRegisteredName: host: method to the NSConnection class object. This method
returnsaproxy to the remote object. You should then inform the proxy of the protocol (s) the remote object responds
to using setProtocol For Proxy:. To obtain the actual connection object instead of the proxy, use the
connectionWithRegisteredName:host: method.

If thestring @" *" is used where ahostname isrequired, it implies alookup for any server registered with the
specified name on the local subnet. If nil is supplied where a hostname is required, the name lookup occurs only
on the local host.

When an NSConnection object is deallocated, the notification NSConnectionDesth is posted to the default
notification center with that NSConnection object.

Exceptions

NSConnection can raise NSlnternal InconsistencyException for a variety of reasons when it detects “impossible”
situations. In addition, NSConnection can raise NSInvalidArgumentException when a remote method invocation
sends an unknown selector.

OpenStep Specification—10/19/94 Classes: NSConnection 2-47

Initializing a Connection

— (id)init Initialize a newly allocated NSConnection suitable for a
new registry and new name.

Establishing a Connection

+ (NSConnection *)connectionWithRegisteredName: (NSString *)name

host: (NSString *)hostName Registers and returns a connection with name on
hostName.
+ (NSConnection *)defaultConnection Establishes and returns a default per-thread connection.

+ (NSDistantObject *)rootProxyFor ConnectionWithRegisteredName: (NSString *)name
host:(NSString *)hostName Registers a connection with name on hostName and returns
its root proxy.

Determining Connections
+ (NSArray *)allConnections Returns an array describing all existing valid connections.
—(BOOL)isvalid Identifies that the receiver is avalid connection.

Registering a Connection

— (BOOL)register Name: (NSString *)name Regi stersthe connection with name on thelocal system and
returns Y ES if the registration was successful, NO
otherwise.

Assigning a Delegate
— (id)delegate Returns the connection’s delegate.
— (void)setDelegate: (id)anObject Sets the connection’s del egate.

Getting and Setting the Root Object
— (id)rootObject Returns the root object served.

— (NSDistantObject *)rootProxy Returnsan NSDistantObject proxy to theroot object served
by this connection.

2-48 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (void)setRoot Obj ect: (id)anObject Sets the root object being served to anObject; if the root
object already exists, replaces it with anObject. Be
aware that if the root object is replaced while a
connection is active, existing root proxies on the client
side of the connection will continue to communicate
with the previous root object, while new proxies will
communicate with the newly established root object.

Request Mode
— (NSString *)requestM ode Returns the mode in which requests are honored.
— (void)setRequestM ode: (NSString *)mode Sets the mode in which requests are honored to mode.

OpenStep Specification—10/19/94 Classes: NSConnection 2-49

Conversation Queueing

—(BOOL)independentConver sationQueueing Returns conver sationQueuing mode. The default valueis
NO.

—(void)setl ndependentConver sationQueueing: (BOOL)flag
If flag is YES, unrelated requests are queued for later
processing. This allows a server to use distributed
objectsfreely initsimplementation without concern for
the consistency of itsinterna state. Note that this can
cause deadlocks among peers.

Timeouts
— (NSTimelnterval)replyTimeout Returns the reply timeout time interval.
— (NSTimelnterval)request Timeout Returns the request timeout time interval.

— (void)setReplyTimeout: (NSTimelnterval)interval ~ Sets the reply timeout to the time interval interval.

— (void)setRequest Timeout: (NSTimelnterval)interval Sets the request timeout to the time interval interval.

Get Statistics

— (NSDictionary *)statistics Returns statistics for this connection.

Implemented by the Delegate

— (BOOL)makeNewConnection: (NSConnection *)connection
sender : (NSConnection *)ancestor Asks permission to create a new connection connection
whereancestor istheancestral connection; returnsYES
if connection allowed.

2-50 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSCountedSet

Inherits From: NSMutableSet : NSSet : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of objects.
NSCountedSet provides support for the mathematical concept of a counted set. A counted set, bothin its
mathematical sense and in the OpenStep implementation of NSCountedSet, is an unordered collection of elements,
just asin aregular set, but the elements of the set aren’t necessarily distinct. In the literature, a counted set is also
knownas a bag.

Each new—that is, distinct—abject inserted into an NSCountedSet object has a counter associated with it.
NSCountedSet keeps track of the number of times objects are inserted and requires that objects are removed the
same number of times. OpenStep also provides the NSSet class for sets whose elements are distinct—that is, there
isonly one instance of an object in an NSSet even if the object has been added to the set multiple times.

Use set objects as an alternative to array objects when the order of elementsis not important, but performancein
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objectsin a set must respond to hash and isEqual: methods. See the NSObject protocol for details on hash and
isEqual:. Each new distinct object must provide a unique hash value.

Generally, you instantiate an NSCountedSet object by sending one of the set... methods to the NSCountedSet class
object, as described in NSSet. These methods return an NSCountedSet object containing the elements (if any) you
passin as arguments. Newly created instances of NSCountedSet created by invoking the set method can be
populated with objects using any of theinit... methods. initWithObjects:: isthe designated initializer for this
class.

You add or remove objects from a counted set using the addObj ect: and removeObj ect: methods.

An NSCountedSet may be queried using the objectEnumerator method, which provides for traversing elements
of the set one by one. The countFor Obj ect: method returnsthe number of timesthe specified object has been added
to this set.

OpenStep Specification—10/19/94 Classes: NSCountedSet 2-51

Initializing an NSCountedSet

— (id)initWithArray:(NSArray *)anArray

— (id)initWithCapacity: (unsigned int)numltems

— (id)initWithSet: (NSSet *)another Set

Adding Objects
— (void)addObj ect: (id)anObject

Removing Objects

— (void)removeObj ect: (id)anObject

Querying the NSCountedSet

— (unsigned int)countFor Obj ect: (id)anObject

— (NSEnumerator *)objectEnumer ator

2-52 Chapter 2: Foundation Kit

Initializes a newly allocated set object by placing in it the
objects contained in anArray.

Initializes anewly allocated set object, giving it enough
memory to hold numltems objects.

Initializes a newly alocated set object by placing in it the
objects contained in another Set.

Adds anObject to the set, unless anObject is equal to some
object aready in the set. In either case, the counter
that's returned by countFor Object: isincremented.

Decrementsthe counter for the object, if the set containsan
object that's equal to anObject. If this causes the
counter to reach zero, the object that’sequal to anObject
isremoved from the set.

Returns the number of times that an object equal to
anObject has ostensibly been added to the set. (This
number is incremented by addObject: and
decremented by removeObject:.)

Returns an enumerator object that will access each object
in the set only once, regardless of its count.

OpenStep Specification—10/19/94

NSData

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSData.h

Class Description

The NSData class declares the programmati ¢ interface to objects that contain datain the form of bytes. NSData
objects hold a static collection of bytes; NSData's subclass, NSMutableData, defines objects that hold modifiable
data. These two classes provide an object-oriented approach to memory allocation, afacility that in procedural
programming is accessed through functions like malloc(). Furthermore, these classes take advantage of operating
system primitives when allocating large blocks of memory.

NSData's two primitive methods—bytes and length—provide the basis for all the other methods in itsinterface.
The bytes method returns a pointer to the bytes contained in the data object. length returns the number of bytes
contained in the data object.

NSData and NSMutableData objects are commonly used to hold the contents of afile. The methods
datawithContentsOfFile: and dataWithContentsOfM appedFile: return objectsthat represent afile's contents.
ThewriteToFile:atomically: method enables you to write the contents of a data object to afile.

NSData provides access methodsfor copying bytesfrom adataobject into abuffer. Use getBytes: to copy theentire
contents of the object or getBytes:length: to copy a subset, starting with the first byte. getBytes.range: copies a
range of bytes from a starting point within the bytes themselves. You can also return a data object that contains a
subset of the bytesin another data object by using the subdatawithRange: method. Or, you can use the
description method to return an NSString representation of the bytes in a data object.

For determining if two data objects are equal, NSData provides the isEqual ToData: method, which does a
byte-for-byte comparison.

Allocating and Initializing an NSData Object

+ (id)allocWithZone: (NSZone *)zone Creates and returns an uninitialized object from zone.
+ (id)data Creates and returns an empty object. This method is
declared primarily for mutable subclasses of NSData.
+ (id)datawithBytes:(const void *)bytes Creates and returns an object containing length bytes
length: (unsigned int)length of data copied from the buffer bytes.
+ (id)datawithBytesNoCopy: (void *)bytes Creates and returns an object containing length bytes
length: (unsigned int)length from the buffer bytes.

OpenStep Specification—10/19/94 Classes: NSData 2-53

+ (id)datawithContentsOfFile: (NSString *)path Creates and returns an object by reading datafrom the file
specified by path.

+ (id)datawithContentsOfM appedFile: (NSString *)path
Creates and returns an object whose contents come from
the mapped file path, assuming mapped files are
available on the underlying operating system. If
mapped files are not available, this method is identical
to datawithContentsOfFile:.

— (id)initWithBytes:(const void *)bytes Initializesanewly allocated NSData object by putting in it
length: (unsigned int)length length bytes of data copied from the buffer bytes.

— (id)initwithBytesNoCopy: (void *)bytes Initializes a newly alocated NSData object by putting in it
length: (unsigned int)length length bytes of data from the buffer bytes.

— (id)initWithContentsOfFile: (NSString *)path Initializesanewly alocated NSData object by reading into
it the data from the file specified by path.

— (id)initWithContentsOfM appedFile: (NSString *)path
Initializes a newly allocated NSData object to contain the
dataresiding in the mapped file path, assuming mapped
filesareavail able on theunderlying operating system. If
mapped files are not available, this method is identical
to initWithContentsOfFile:.

— (id)initWithData: (NSData *)data Initializesanewly allocated NSData object by placinginit
the contents of another NSData object, data.

Accessing Data

— (const void *)bytes Returns a pointer to the object’s contents. This method
returns read-only access to the data.
— (NSString *)description Returns an NSString object that contains a hexadecimal
representation of the the receiver’s contents.
— (void)getBytes: (void *)buffer Copies the receiver’s contents into buffer.
— (void)getBytes: (void *)buffer Copies length bytes of the receiver’s contentsinto buffer.
length: (unsigned int)length
— (void)getBytes: (void *)buffer Copiesinto buffer the portion of the receiver’s contents
range: (NSRange)aRange within aRange. Raises an NSRangeException if

aRange is not within the range of the receiver’s data.

— (NSDhata *)subdatawithRange: (NSRange)aRange Returns an object containing a copy of the receiver’s bytes
that fall within thelimits specified by aRange. Raisesan
NSRangeException if aRangeis not within the range of
the receiver's data

2-54 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Querying a Data Object

— (BOOL)isEqual ToData: (NSData *)other Compares the receiving object to other. If the contents of
other are equal to the contents of the receiver, this
method returns YES. If not, it returns NO.

— (unsigned int)length Returns the number of bytes contained in the receiver.

Storing Data

— (BOOL)writeToFile:(NSString *)path Writes the bytesin the receiving object to the file specified
atomically: (BOOL)useAuxiliaryFile by path. If useAuxiliaryFileis YES, the datais written
to abackup file and then, assuming no errors occur, the
backup file is renamed atomically to the intended file
name.

Deserializing Data

— (unsigned int)deserializeAlignedBytesL engthAtCur sor : (unsigned int*)cursor
Returns the length of the serialized bytes at the location
referenced by cursor. If the bytes have been
page-aligned, it also obtains the relevant “hole’
information and adjuststhe cursor. Aninvocation of this
method must have a corresponding
serializeAlignedBytesL ength: invocation.

— (void)deserializeBytes: (void *)buffer Deserializes bytes number of bytesin the buffer pointed
length: (unsigned int)bytes at by buffer, places them internally starting at cursor,
atCur sor: (unsigned int*)cursor and advances the cursor.

— (void)deserializeDataAt: (void *)data Deserializes the data pointed at by cursor, interpreting it
of Obj CType:(const char *)type by the Objective C type specifier type and writing it
atCursor : (unsigned int*)cursor to the memory location referenced by data. If the data

context: (id <NSObjCTypeSeridizationCdlBack>) element is an object other than an instance of
callback NSDictionary, NSArray, NSString, or NSData, a
callback from object callback can provide further
definition of the object. All Objective C types are
currently supported except union and void *. Pointers
refer to asingle item.

OpenStep Specification—10/19/94 Classes: NSData 2-55

— (int)deserializel ntAtCursor: (unsigned int*)cursor Deserializesand returnstheinteger encoded at cursor. Also
advances the cursor.

— (int)deserializel ntAtl ndex: (unsigned int)index Deserializesand returnstheinteger encoded at offset index.
Does not advance the cursor.

— (void)deserializel nts:(int *)intBuffer Deserializes numintsintegers encoded at the location
count: (unsigned int)numints referenced by cursor and puts them in the buffer
atCursor : (unsigned int*)cursor intBuffer. Also advances the cursor.

— (void)deserializel nts: (int *)intBuffer Deserializes numints integers encoded at offset index
count: (unsigned int)numints and puts them in the buffer intBuffer. Does not advance
atl ndex: (unsigned int)index the cursor.

2-56 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSDate

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Desciption

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing time intervals, and similar functionality. It presents a programmatic interface through which suitable
date objects are requested and returned. NSDate objects are lightweight and immutable since they represent a
invariant point intime. Thisclassis designed to provide the foundation for arbitrary calendrical representations. Its
subclass NSCalendarDate offers date objects that are suitable for representing dates according to western
calendrical systems.

“Date” as used above implies clock time aswell. The standard unit of time for date objectsis avalue typed as
NSTimelnterval (adouble) and expressed as seconds. The NSTimelnterval type makes possible awide and
fine-grained range of date and time values, giving accuracy within milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute reference date. This reference dateis
thefirst instant of January 1, 2001. NSDate converts al date and time representations to and from NSTimel nterval
values that are relative to this absol ute reference date. A positive interval relative to a date represents apoint in the
future, a negative interval represents atime in the past.

Note: Conventional UNIX systems implement time according to the Network Time Protocol (NTP) standard,
which is based on Coordinated Universal Time. The private implementation of NSDate follows the NTP standard.
However, thisstandard doesn’t account for |eap seconds and thereforeisn’t synchronized with International Atomic
Time (the most accurate).

Like various other Foundation classes, NSDate lets you obtain operating-system functionality (dates and times)
without depending on operating-system internals. It also provides abasisfor the NSRunL oop and NSTimer classes,
which use concrete date objects to implement local event loops and timers.

NSDate's sole primitive method, timel nter val SinceRefer enceDate, providesthe basisfor all the other methodsin
the NSDate interface. It returns atime value relative to an absol ute reference date.

Using NSDate

The date obj ects dispensed by NSDate give you adiverse range of date and time functionality. To obtain dates, send
one of the date... messages to the NSDate class object. One of the most useful is date itself, which returns a date
object representing the current date and time. You can get new date objects with date and time val ues adjusted from
existing date objects by sending addTimel nterval:.

OpenStep Specification—10/19/94 Classes: NSDate 2-57

You can obtain relative date information by sending the timel nterval... messges to a date object. For instance,
timel nterval SinceNow gives you the time, in seconds, between the current time and the receiving date object.
Compare dates with the isEqual:, compare:, later Date:, and ear lier Date: methods and use the description
method to obtain a string object that represents the date in a standard international format.

Creating an NSDate Object

+ (id)allocWithZone: (NSZone *)zone Allocates an unitialized NSDate in zone. Returns nil if
allocation fails.

+ (NSDate *)date Creates and returns an NSDate set to the current date and
time.

+ (NSDate *)dateWithTimel nterval SinceNow: (NSTimel nterval)seconds
Creates and returns an NSDate set to seconds secondsfrom
the current date and time.

+ (NSDate *)dateWithTimel nterval Sincel970: (NSTimel nterval)seconds
Creates and returns an NSDate set to to seconds seconds
from the reference date used by UNIX® systems. Use a
negative argument value to specify a date and time
before the reference date.

+ (NSDate *)dateWithTimel nterval SinceReferenceDate: (NSTimel nterval)seconds
Creates and returns an NSDate set to seconds secondsfrom
the absolutereferencedate (thefirst instant of 1 January,
2001). Use a negative argument value to specify adate
and time before the reference date.

+ (NSDate *)distantFuture Creates and returns an NSDate that represents adatein the
distant future (in terms of centuries). You can use this
object in your code asacontrol date, aguaranteed outer
temporal limit.

+ (NSDate *)distantPast Creates and returns an NSDate that represents adatein the
distant past (in terms of centuries). You can use this
object in your code as a control date, a guaranteed
temporal boundary.

— (id)init Initializesanewly allocated NSDateto the current date and
time.
— (id)initWithString: (NSString *)description Returns an NSDate with a date and time val ue specified by

theinternationa string-representation format:
YYYY-MM-DD HH:MM:SS +HHMM, where
+HHMM is atime zone offset in hours and minutes
from Greenwich Mean Time.

2-58 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (NSDate *)initWithTimel nterval: (NSTimel nterval)seconds
sinceDate: (NSDate *)another Date Returns an NSDate initialized relative to another date

object by seconds (plus or minus).

— (NSDate *)initWithTimel nter val SinceNow: (NSTimel nterval)seconds
Returns an NSDate initialized relative to the current date

and time by seconds (plus or minus).

—(id)initWithTimel nterval SinceRefer enceDate: (NSTimel nterval)seconds
Returnsan NSDate initialized relative to the reference date

and time by seconds (plus or minus).

Converting to an NSCalendar Object

— (NSCalendarDate *)dateWithCalendar For mat: (NSString *)formatString
timeZone: (NSTimeZone *)timeZone Returns an NSCalendarDate object bound to the format
string formatString and the time zone timeZone. If you

specify nil after either or both of these arguments, the
default format string and time zone are assumed.

Representing Dates

Returns a string representation of the receiver. The
representation conforms to the international format
YYYY-MM-DD HH:MM:SS+HHMM, where
+HHMM represents the time-zone offset in hours and
minutes from Greenwich Mean Time (GMT).

— (NSString *)description

— (NSString *)descriptionWithCalendar For mat: (NSString *)formatString
timeZone:(NSTimeZone *)aTimeZone Returns a string representation of the receiver. The

locale: (NSDictionary *)localeDictionary representation conforms to formatString (a
strftime-style date-conversion string) and is adjusted to

aTimeZone. Included are the keys and values that
represent the locale data from localeDictionary.

— (NSString *)descriptionWithL ocale: (NSDictionary *)localeDictionary
Returns a string representation of receiver (see

description). Included are the key and values that
represent the locale data from localeDictionary.

OpenStep Specification—10/19/94 Classes: NSDate 2-59

Adding and Getting Intervals

+ (NSTimelnterval)timel nterval SinceRefer enceDate
Returnsthe interval between the system’s absolute
reference date and the current date and time. Thisvalue
islessthan zero until thefirst instant of 1 January 2001.

—addTimel nterval: (NSTimel nterval)seconds Returns an NSDate that’s set to a specified number of
seconds rel ative to the receiver.

— (NSTimelnterval)timel nter val Since1970 Returnstheinterval between the receiver and the reference
date used by UNIX® systems.

— (NSTimelnterval)timel nterval SinceDate: (NSDate *)another Date
Returnstheinterval between the receiver and another Date.

— (NSTimelnterval)timel nterval SinceNow Returns the interval between the receiver and the current
date and time.

— (NSTimelnterval)timel nter val SinceReferenceDate
Returns the interval between the receiver and the system’s
absolutereferencedate. Thisvalueislessthan zero until
thefirst instant of 1 January 2001.

Comparing Dates

— (NSComparisonResult)compar e:(NSDate *)another Date
Compares the receiver’'s date to that of another Date and
returns NSOrderedDescending if the receiver is
temporally later, NSOrderedAscending if it's
temporally earlier, and NSOrderedSame if they are

equal.

— (NSDate *)ear lier Date: (NSDate *)anotherDate Compares the receiver’s date to another Date and returns
the one that’s temporally earlier.

— (BOOL)isEqual: (id)anotherDate Returns YES if another Date and the receiver are within
one second of each other; otherwise, returns NO.

— (NSDate *)later Date: (NSDate *)another Date Compares the receiver’'s date to another Date and returns
the one that’s temporally later.

2-60 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSDeserializer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSSerialization.h

Class Description

The NSDeserializer class declares methods that convert an abstract representation of a property list (as contained
inan NSData object) into agraph of property list objectsin memory. The NSDeserializer classobject itself provides
these methods; you don't create instances of NSDeserializer. Options to these methods allow you to specify that
container objects (arrays or dictionaries) in the resulting graph be mutable or immutable; that deserialization begin
at the start of the data or from some position within it; or that deserialization occur lazily, so that a property listis
deserialized only if it is actually going to be accessed. See the NSSerializer specification for more information on
seriaization.

Deserialization Into Property Lists

+ (id)deserializePropertyListFromData: (NSData *)data
atCursor: (unsigned int*)cursor Returns a property list object corresponding to the abstract
mutableContainer s;(BOOL)mutable representation in data at the location cursor. If mutable
is YES and the object isadictionary or an array, the
re-composed object is made mutable. Returns nil if the
object isnot avalid one for property lists.

+ (id)deserializePropertyListFromData: (NSData *)data
mutableContainers;(BOOL)mutable Returns a property list object corresponding to the abstract
representation in data or nil if data doesn’t represent a
property list. If mutableis YES and the object isa
dictionary or an array, the re-composed object is made

mutable.
+ (id)deserializePropertyListL azilyFromData: (NSData *)data
atCur sor : (unsigned int*)cursor Returnsaproperty list from data at location cursor or nil if
length: (unsigned int)length data doesn’t represent a property list. The
mutableContainer s;(BOOL)mutable deserialization proceeds|lazily. That is, if data at cursor

has a length greater than length, a proxy is substituted
for the actual property list aslong as the constituent
objects of that property list are not being accessed. If
mutable is YES and the object is adictionary or an
array, the re-composed aobject is made mutable.

OpenStep Specification—10/19/94 Classes: NSDeserializer 2-61

NSDictionary

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

Class Description

TheNSDictionary class declaresthe programmatic interface to objectsthat manage immutabl e associations of keys
and values. You use this class when you need a convenient and efficient way to retrieve data associated
with an arbitrary key.

A key-value pair within an NSDictionary is called an entry. Each entry consists of an string object that represents
the key and another object (of any class) that is that key’s value. You establish the entries when the NSDictionary
is created, and thereafter the entries can’t be modified. (The complementary class NSMutableDictionary defines
objects that manage modifiable collections of entries. See the NSMutableDictionary class specification for more
information.)

Internally, an NSDictionary uses a hash tableto organizeits storage and to provide rapid accessto avalue given the
corresponding key. However, the methods defined for this classinsulate you from the compl exities of working with
hash tabl es, hashing functions, or the hashed value of keys. These methodstake key valuesdirectly, not their hashed
form.

Generally, you instantiate an NSDictionary by sending one of the dictionary... messages to the class object. These
methods return an NSDictionary containing the associations specified as arguments to the method. Each key
argument is copied and the copy is added to the NSDictionary. Each corresponding value object receives aretain
message to ensure that it won't be deallocated prematurely.

NSDictionary’s three primitive methods—count and objectFor Key: and keyEnumer ator—provide the basisfor
all the other methodsin itsinterface. The count method returns the number of entriesin the object, objectFor Key:
returns the val ue associated with the given key, and keyEnumer ator returns an object that lets you step through
entries in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The non-primitive methods
provide convenient ways of accessing multiple entries at once. The description... methods and the
writeToFile:atomically: method cause an NSDictionary to generate a description of itself and storeitin astring
object or afile.

Exceptions

NSSet implements the encodeWithCoder: method, which raises NSInternal Inconsi stencyException if the number
of objects enumerated for encoding turns out to be unequal to the number of objectsin the set.

2-62 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Creating and Initializing an NSDictionary
+ (id)allocWithZone: (NSZone *)zone Creates and returns an uninitialized NSDictionary in zone.
+ (id)dictionary Creates and returns an empty NSDictionary.

+ (id)ydictionaryWithContentsOfFile: (NSString *)path
Creates and returns an NSDictionary from the keys and
values found in the file specified by path.

+ (id)dictionaryWithObjects:(NSArray *)objects Creates and returns an NSDictionary that associates
forKeys:(NSArray *)keys objects from the objects array with keys from the keys
array. Keys must be strings. Raises
NSInvalidArgumentException if the number of objects
isnot equal to the number of keys.

+ (id)dictionaryWithObjects: (id *)objects Creates and returns an NSDictionary containing count
forKeys:(id *)keys objects from the objects array. The objects are
count: (unsigned int)count associated with count keys taken from the keys array.

+ (id)dictionaryWithObjectsAndK eys: (id)firstObject, ...

Createsand returnsan NSDi ctionary that associates objects
and keys from the argument list. The list must bein
form: objectl, keyl, object2, key2, ..., nil. Raises
NSInvalidArgumentExceptionif any of thekeysarenil,
or if any of the keys are not of the NSString class.

— (id)initWithContentsOfFile: (NSString *)path Initializes a newly allocated NSDictionary using the keys
and values found in filename.

— (id)initWithDictionary: (NSDictionary *)dictionary
Initializes anewly allocated NSDictionary by placing in it
the keys and values contained in other Dictionary.

— (id)initWithObjectsAndK eys. (id)firstObject,... Initializes anewly allocated NSDictionary by placing in it
the objects and keys from the argument list. Thelist
must be in form: objectl, keyl, object2, key2, ..., nil.
Raises NSInvalidArgumentException if any of the keys
arenil, or if any of the keys are not of the NSString

class.
— (id)initWithObjects: (NSArray *)objects Initializes a newly allocated NSDictionary by associating
forKeys:(NSArray *)keys objects from the objects array with keys from the keys

array. Keys must be strings. Raises
NSInvalidArgumentException if the number of objects
is not equal to the number of keys.

OpenStep Specification—10/19/94 Classes: NSDictionary 2-63

— (id)initWithObjects:(id *)objects
forKeys:.(id *)keys
count: (unsigned)count

Accessing Keys and Values

—(NSArray *)allKeys

— (NSArray *)allKeysFor Object: (id)object

— (NSArray *)allValues

— (NSEnumerator *)keyEnumer ator

— (NSEnumerator *)objectEnumerator

— (id)objectForKey:(id)aKey

Counting Entries

— (unsigned)count

Comparing Dictionaries

Initializes a newly allocated NSDictionary by associating
count objects from the objects array with an equal
number of keys from the keys array. Raises
NSInvalidArgumentException if any of the objects or
keys are nil.

Returns an NSArray containing the receiver’s keys or an
empty array if the receiver has no entries.

Finds all occurrences of the value anObject in the receiver
and returns an array with the corresponding keys.

Returns an NSArray containing the dictionary’s values, or
an empty array if the dictionary has no entries.

Returns an NSEnumerator that |ets you access each of the
receiver's keys.

Returns an NSEnumerator that lets you access each the
receiver’s values.

Returns an entry’s value given its key, or nil if no valueis
associated with aKey.

Returns the number of entriesin the receiver.

—(BOOL)isEqualToDictionary:(NSDictionary *)other

Storing Dictionaries

— (NSString *)description

— (NSString *)descriptionl nStringsFileFor mat

2-64 Chapter 2: Foundation Kit

Compares the receiver to otherDictionary. If the contents
of otherDictionary are equal to the contents of the
receiver, this method returns YES. If not, it returns NO.

Returns a string that represents the contents of the receiver.

Returnsastring that represents the contents of the receiver.
Key-value pairs are represented in aappropriate for use
in“.strings’ files

OpenStep Specification—10/19/94

— (NSString *)descriptionWithL ocale: (NSDictionary *)localeDictionary
Returns a string representation of the NSDictionary object.

Included arethe key and valuesthat represent thelocale
datafrom localeDictionary.

— (NSString *)descriptionWithL ocale: (NSDictionary *)localeDictionary
indent: (unsigned int)level Returns astring representation of the NSDictionary object.
Included arethe key and valuesthat represent thelocale
datafromlocaleDictionary. Elementsareindented from
theleft margin by level + 1 multiples of four spaces, to
make the output more readable.

— (BOOL)writeToFile:(NSString *)path Writes a textual description of the contents of the
atomically: (BOOL)useAuxiliaryFile receiver to filename. If useAuxiliaryFileis YES, the
datais written to a backup file and then, assuming no
errors occur, the backup file is renamed to the intended

file name.

OpenStep Specification—10/19/94 Classes: NSDictionary 2-65

NSDistantObject

Inherits From: NSProxy
Conforms To: NSCoding
NSObject (NSProxy)
Declared In: Foundation/NSDistantObject.h

Class Description

The NSDistantObject class declares the programmatic interface to objects that serve as proxies to remote real
objects.

Your application does not in general need to explicitly create NSDistantObject objects—they are created
automatically when you create NSConnection objects for a remote object.

Exceptions

NSDistantObject raises an NSInternal InconsistencyException for a variety of exceptions resulting from internal
consistency failures.

Building a Proxy

+ (NSDistantObject *)proxyWithL ocal: (id)target Builds and returns alocal proxy for alocal object target,
connection: (NSConnection *)connection forming aremote proxy on the other side of connection.

+ (NSDistantObject *)proxyWithTarget: (id)target Builds and returns aremote proxy where target is an object
connection: (NSConnection *)connection on the other side of connection.

Initializing a Proxy

— (id)initWithL ocal: (id)target Builds alocal proxy for alocal object target, forming a
connection: (NSConnection *)connection remote proxy on the other side of connection. You may
not retain or otherwise use this proxy.
—(id)initWithTar get: (id)target Buildsaremote proxy wheretarget isan object on the other
connection: (NSConnection *)connection side of connection. It may deallocate and return nil if

thistarget is already known on the connection. Thisis
the designated initializer for subclasses.

2-66 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Specifying a Protocol

— (void)setProtocol For Proxy: (Protocol *)proto Sets the proxy’s protocol to proto for efficiency.

Returning the Proxy’s Connection

— (NSConnection *)connectionFor Proxy Returns the NSConnection instance used by the proxy.

OpenStep Specification—10/19/94 Classes: NSDistantObject 2-67

NSEnumerator

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSuUTtilities.h

Class Description

NSEnumerator is asimple abstract class whose instances enumerate collections of other objects. Collection
objects—such as NSSets, NSArrays, and NSDictionaries—provide NSEnumerator objects that can traverse their
contents. You send nextObj ect repeatedly to an NSEnumerator to have it return the next object in the collection.
When there are no more objects to return, nextObject returns nil.

Collection classes include methods that return an enumerator appropriate to the type of collection. NSArray has
two methodsthat return an NSEnumerator object, objectEnumer ator and rever seObjectEnumer ator (theformer
traversesthe array starting at its first object, while the latter starts with the last object and continues backward
through the array to the first object). NSSet’s objectEnumer ator provides an enumerator for sets. NSDictionary
has two enumerator-providing methods: keyEnumerator and objectEnumer ator.

Note: Collections shouldn’t be modified during enumeration. NSEnumerator imposes this restriction to improve
enumeration speed.

Traversing a Collection

— (id)nextObj ect Returns the next object in the collection being enumerated
(for example, an NSArray or NSDictionary). Returns
nil when the collection has been traversed.

2-68 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSException

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSException.h

Class Description

The NSException class provides an object-oriented way for applications to announce and react to exceptional
conditions.

An exceptional conditionisonethat interruptsthe normal flow of program execution. Each application can interpret
different types of conditions as exceptional. For example, one application might view as exceptional the attempt to
saveafilein adirectory that’swrite-protected. In this sense, an exceptional condition can be equivalent to an error.
Another application might interpret the user’s keypress as an exceptional condition—an indication that a
long-running process should be aborted.

Raising an Exception

Once an exceptional condition is detected, it must be propagated to the routine or routines that will handle it, a
process referred to as “raising an exception.” 1n the OpenStep exception handling system, exceptions are raised by
instantiating an exception object and sending it a raise message.

Exception objects encapsulate:
e aname. A short NSString that is used to uniquely identify the exception

» areason. A longer NSString that contains a“human-readable” reason for the exception. This reason object
is printed when the exception object is printed using the “%@" format.

» userinfo. An NSDictionary object that you can use to supply application-specific data to the exception
handler. For example, if afunction’sreturn value caused the exception to be raised, you could passthereturn
value to the exception handler through the userInfo dictionary. Or, if the exception handler displays a panel
in response to the exception, userInfo could contain the text string to be displayed in the panel.

Handling an Exception

Sending ar aise message to an exception object initiates the propagation of the exception and passes data about it.
Where and how the exception is handled depends on where you send the message from. Let’sfirst look at asimple
case.

In general, araise message is sent to an exception object within the domain of an exception handler. An exception
handler is a control structure created by the macros NS_DURING, NS HANDLER, and NS ENDHANDLER.

OpenStep Specification—10/19/94 Classes: NSException 2-69

Function()

NS_DURING

if (/error*/) {
exception handling ——! [NSException raise...]
domain

local exception —— A < .
handler | 1
NS_ENDHANDLER

return;

Figure 2-2. Exception Handling Domain and Handler

The section of code between NS DURING and NS_HANDLER is the exception handling domain; the section
between NS HANDLER and NS ENDHANDLER isthe local exception handler. The normal flow of program
execution is marked by the gray arrow; the code within the local exception handler is executed only if an exception
israised. Sending ar aise message to an exception object causes program control to jump to thefirst executableline
following NS_ HANDLER, asindicated by the black arrow.

An exception can be raised directly within the exception handling domain, or indirectly from one of the methods
or functions invoked from the domain. No matter how deeply in acall sequence an exception is raised, execution
jumpsto thelocal exception handler (assuming there are no intervening exception handlers, as discussed in the next
section). In this way, exceptions raised at alow level can be caught at ahigh level.

If an exception is raised and execution begins within the local exception handler, it either continues until all
appropriate statements are executed or the exception is raised again to invoke the services of an encompassing
exception handler, as described in the next section.

If the exception isn't raised again, execution within the local exception handler continues until it leaves the local
handler by:

» “Fdling off the end”
» Calling NS VALUERETURN()
» Calling NS VOIDRETURN

Note: A simple return from the exception-handling domain is not permitted.

2-70 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

“Falling off the end” is simply the normal execution pathway introduced above. After all appropriate statements
within the domain are executed (and no exception is raised), execution continues on the line following

NS ENDHANDLER. Alternatively, you can return control to the caller from within the domain by calling

NS VALUERETURN() or NS_VOIDRETURN, depending on whether you need to return a value.

You can't use goto or return() to exit an exception handling domain—errorswill result. Nor can you use setjmp()
and longjmp() if the jump entails crossing an NS_DURING statement. Since in many cases you won't know if the
code that your program calls has exception handling domains within it, it's generally not recommended that you
use setjmp() and longjmp() in your application.

Nested Exception Handlers

Exception handlers can be nested so that an exception raised in an inner domain can be treated by the local
exception handler and any number of encompassing exception handlers. The following diagram illustrates the use
of nested exception handlers, and is discussed in the text that follows.

top-level exception handler

4
Function1()
Function?2()
NS_DURING
Function3()
NS_DURING
Function2();
. NS_DURING
Function3();
NS_HANDLER
. [NSException raise...J;
)) NS_HANDLER
[NSException raise...];
NS_ENDHANDLER s NG SANELER
o \ [NSException raise...]; -
NS_ENDHANDLER L —
return;) .
\ [NSException raise...J;
NS_ENDHANDLER
return;
return;

Figure 2-3. Nested Exception Handlers

An exception rai sed within Function3's domain causes execution to jump to itslocal exception handler. In atypical
application, this exception handler checks the val ues contained the NSException object to determine the nature of
the exception. For exception typesthat it recognizes, the local handler responds and then sends a r ai se message to
the exception object to pass notification of the exception to the handler aboveit (in this case, the handler in

OpenStep Specification—10/19/94 Classes: NSException 2-71

Function2). Function2’s exception handler does the same and then raises the exception to Functionl’'s handler.
Finally, Functionl’s handler re-rai ses the exception. Since there's no exception handling domain above Functionl,
the exception istransferred to adefault top-level error handler. For applications based on the Application Kit, this
top-level handler invokes NSApplication’s repor tException: method, which writes an error message to the
console.

An exception that’sre-rai sed appearsto the next higher handler just asif theinitial exception had been raised within
its own exception handling domain.

Raising an Exception Outside of an Exception Handler

If an exception israised outside of any exception handler, it's intercepted by the uncaught exception handler, a
function set by NSSetUncaught ExceptionHandler () and returned by NSUncaught ExceptionHandler (). You can
change the way uncaught exceptions are handled by using NSSetUncaughtExceptionHandler () to establish a
different procedure as the handler. However, because of the design of the Application Kit, it'srare for an exception
to be raised outside of an exception handling domain. The NSApplication object’s event loop itself iswithin an
exception handling domain. On each cycle of the loop, the NSApplication object retrieves an event and sends an
event message to the appropriate object in the application. Thus, the code you write for custom objects (aswell as
the code for Application Kit objects) is executed within the context of the event loop’s exception handler.

Predefined Exceptions
OpenStep predefines a number of exception names. These exceptions are listed in NSException.h; for example:

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;

For acompletelist of global exception names, seethe” Typesand Constants’ sections of thismanual. You can catch
any of these exceptions from within your exception handler by comparing the exception’s name with these
predefined exception names.

Creating and Raising Exceptions

+ (NSException *)exceptionWithName: (NSString *)name

reason: (NSString *)reason Creates an exception object, assigning it name as its name,
user I nfo: (NSDictionary *)userInfo reason as its human-readabl e explanation, and userInfo
as arbitrary data that will accompany the exception.
+ (volatile void)raise: (NSString *)name Creates and raises an exception with name name and
format: (NSString *)format,... areason constructed from format and the following

arguments in the manner of printf(). The user-defined
information is nil. Invokes raise as part of its
implementation.

2-72 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

+ (volatile void)raise: (NSString *)name
format: (NSString *)format
arguments:(va_list)argList

— (id)initWithName: (NSString *)name
reason:(NSString *)reason
user I nfo: (NSDictionary *)userInfo

— (volatile void)raise

Querying Exceptions

— (NSString *)name

— (NSString *)reason

— (NSDictionary *)userInfo

OpenStep Specification—10/19/94

Creates and raises an exception with name name and
areason constructed from format and the argumentsin
argList, in the manner of vprintf(). The user-defined
information isnil. Invokesraise as part of its
implementation.

Initializes a newly allocated exception object, assigning it
name as its name, reason as its human-readable
explanation, and userInfo as arbitrary data that will
accompany the exception.

Raises the exception, causing program flow to jump to the
enclosing error handler.

Returns the exception’s name. See
exceptionWithName:reason:user I nfo:.

Returns the exception’s reason. See
exceptionWithName:reason:user | nfo:.

Returns the exception’s user-defined data. See
exceptionWithName:reason: user I nfo:.

Classes: NSException 2-73

NSInvocation

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: Foundation/NSlnvocation.h

Class Description

Objects of the NSInvocation class provide a system-independent means to construct message callsto other objects.
An NSlInvocation object constructs a target object to which a message can be sent, a selector for that method, an
argument list for the selector, and areturn value. NSInvocation objects provide great flexibility in that the methods,
method arguments, and targets of the methods may be constructed dynamically.

Thefinal sending of the message to the target object can be performed at any time, independent of constructing the
invocation. For example, methods could be dispatched based on timer events. In addition, return values from the
methods are stored in the NSInvocation object and can be retrieved at any later stage in processing.

Also see NSMethodSignature for a description of how to construct method signatures.

The Foundation/NSI nvocation.h header file defines two macros that may be used as constructors for
invocations:

NSInvocation *invocation = NS _MESSAGE(target, message)
builds an invocation containing a message to a known
target object. target is an object id. message consists of
a selector followed by any arguments, just like an
Objective-C message.

NSInvocation *invocation = NS _INVOCATION(class, message)
builds an invocation containing amessage to the untargeted
class object class. message consists of a selector
followed by any arguments, just like an Objective-C

message.

Creating Invocations

+ (NSlnvocation *)invocationWithM ethodSignatur e: (NSMethodSignature *)sig
Returns an invocation object able to construct callsto
objects using method sel ectors with type signatures
described by sig. Raises NSlInvalidArgumentException
if sigisnil.

2-74 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Managing Invocation Arguments
— (BOOL)argumentsRetained

— (void)getArgument: (void *)argumentLocation
atl ndex: (int)index

— (void)getReturnValue: (void *)retLoc

— (NSMethodSignature *)methodSignature

— (void)retainArguments

— (SEL)selector
— (void)setArgument: (void *)argumentLocation
atl ndex: (int)index

— (void)setReturnValue: (void *)retLoc

— (void)setSelector : (SEL)selector
— (void)setTar get: (id)target
— (id)target

Dispatching an Invocation

— (void)invoke

— (void)invokeWithTar get: (id)target

OpenStep Specification—10/19/94

Returns YES if arguments are retained.

Copies the argument stored at index into the storage
pointed to by argumentLocation where 2 isthe index of
the first argument, 3 isthe index of the second, and so
on.

Copies the invocation’s return value into the storage
pointed to by retLoc.

Returns the invocation’s method signature object.

By default, target and arguments are not retained, and C
strings are not copied. This method instructs the
invocation to retain its arguments, target, and make
copies of C strings. This method is invoked
automatically by timers. Thismethod should beinvoked
whenever the dynamic scope of the invocation can
exceed its arguments.

Returns the invocation’s selector.

Sets the argument stored at index to the storage pointed to
by argumentLocation where 2 isthe index of thefirst
argument, 3 isthe index of the second, and so on..

Sets the invocation’s return value to that indicated by
retLoc.

Sets the invocation’s selector to selector.
Setsthe invocation’s target to target.

Returns the invocation’s target; returns nil if thereisno
target.

Causes the message encoded in the invocation to be
dispatched to its target.

Causes the message encoded in the invocation to be
dispatched to target.

Classes: NSIinvocation 2-75

NSLock

Inherits From: NSObject
Conforms To: NSLocking

NSObject (NSObject)
Declared In: Foundation/NSL ock.h

Class Description

An NSLock is used to protect critical regions of code. A lock is created once and is subsequently used to protect
one or more regions of code. If aregion of codeisin use, an NSLock waits using the condition_wait() function,
so the thread doesn’t busy-wait. The following example shows the use of an NSLock with the methods lock and
unlock defined in the NSLocking protocol:

NSLock *theLock = [NSLock new] ; // done once!

/* ... other code */

[theLock lock];

/* ... possibly a long time of fussing with global data... */

[theLock unlock] ;

The NSConditionL ock, NSLock, and NSRecursivel_ock classes all implement the NSL ocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

Acquiring a Lock

— (BOOL)tryL ock Attempts to acquire alock. Returns Y ES if successful and
NO otherwise. Returns immediately.

2-76 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSMethodSignature

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSM ethodSignature.h

Class Description

NSMethodSignature provides the programmatic interface to objects that provide accessto the “type signatures’ of
an object’s methods—that is, the types of the arguments and return value. A method signature is used by the
distributed objects machinery to determine how to correctly encode method names and arguments for the
underlying inter-process communications. The typical use of method signatures is when amessageissent to a
remote object via aproxy. If the proxy doesn’t know the types of arguments aremote object will use, the proxy first
has to query the remote object for its method signature object, which specifies the types the method requires as
arguments. The proxy then knows how to encode the data it has been passed and forward it correctly to the real
object.

You create a method signature object by sending a signatureWithObj CTypes method to the NSMethodSignature
class object, passing a“ C”-style character string which specifies the method’s return types and argument types.

Given amethod signature, all other availableinstance methods query the object for information about the signature,
such asits return type, number of arguments, stack frame size (obviously architecture-dependent), and so on.

Also see NSlnvocation for the class which can use method signature objects to send messages to other objects.

Creating a Method Signature

+ (NSMethodSignature *)signatur eWithObj CTypes: (const char *)types
Creates a method signature object given types, a string
encoding the method return and argument types.

Querying a Method Signature

— (NSArgumentinfo)ar gumentl nfoAtl ndex: (unsigned)index
Returns information about the argument at index. Indices
begin with 0. The “hidden” arguments self and _cmd
areindexed at 0 and 1; method-specific argumentsbegin
at index 2. If index istoo large for the actual number of
arguments, NSInvalidArgumentException is raised.

— (unsigned)framelength Returns the number of bytes that the arguments, taken
together, would occupy on the stack.

OpenStep Specification—10/19/94 Classes: NSMethodSignature 2-77

— (BOOL)isOneway Returns YES if the method is asynchronous (that is, it
returns without waiting for the receiver to finish
processing it), and NO otherwise.

— (unsigned)methodReturnL ength Returns the number of bytes required by the return value.

— (char *)methodReturnType Returns a string encoding the return type of the method.
(What the charactersin the string represent is usually
defined by some implementation-dependent runtime

types.)

— (unsigned)number Of Arguments Returns the number of arguments recorded in the receiver.
Thiswill be at least two, sinceit includes the “hidden”
arguments, self and _cmd, which are thefirst two
arguments passed to every method implementation.

2-78 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSMutableArray

Inherits From: NSArray : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSArray)
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class Description

The NSMutableArray class declares the programmiatic interface to objects that manage a modifiable array of
objects. This class adds insertion and deletion operations to the basic array-handling behavior it inherits from
NSArray.

The array operations that NSMutableArray declares are conceptually based on these three methods:

addObject:
replaceObjectAtlndex:withObject:
removel astObject

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the array
and of removing an object based on its identity or position in the array.

When an object isremoved from amutable array it receives ar el ease message, which can causeit to be deall ocated.
Note that if your program keeps a reference to such an object, the reference may become invalid unless you
remember to send the object aretain message beforeit’'s removed from the array. For example, the third statement
below could result in arun-time error, except for the retain message in the first statement:

id anObject = [[anArray objectAtIndex:0] retain];
[anArray removeObjectAtIndex:0];
[anObject someMessage] ;

Implementing Subclasses of NSMutableArray

Although conceptually the interface to the NSMutableArray classis based on the three methods listed above, for
performance reasons two others—insertObject:atl ndex: and removeObjectAtlndex:—also directly accessthe
object’sdata. Thesetwo methods could be implemented using the methods listed above but in doing so would incur
unnecessary overhead from the retain and release messages that objects would receive as they are shifted to
accommodate theinsertion or del etion of an element. Thus, if you create asubclass of NSMutableArray, you should
override all five primitive methods so that the other methods in NSMutableArray’s interface work properly.

Creating and Initializing an NSMutableArray

+ (id)allocWithZone: (NSZone *)zone Creates and returns an uninitialized NSMutableArray in
Zone.

OpenStep Specification—10/19/94 Classes: NSMutableArray 2-79

+ (id)arrayWithCapacity: (unsigned int)JaNumitems Creates and returns an NSMutableArray, giving it enough
alocated memory to hold numltems objects.

— (id)initWithCapacity: (unsigned intjaNumltems Initializes a newly allocated NSMutableArray, giving it
enough memory to hold numltems objects.

Adding Objects

— (void)addObject: (id)anObject Inserts anObject at the end of the array. Raises
NSInvalidArgumentException if anObject is nil.

— (void)addObjectsFromArray: (NSArray *)another Array
Adds the objects contained in another Array to the end of
the receiver’'s array.

— (void)insertObj ect: (id)anObject atl ndex: (unsigned int)index
Inserts anObject into the array at index. Raises
NSInvalidArgumentExceptionif anObjectisnil. Raises
NSRangeException if index is outside of the bounds of

the array.
Removing Objects
— (void)removeAllObjects Emptiesthe array of all its elements.
— (void)removel astObj ect Removes the last object in the array and sendsit arelease

message. Raises NSRangeException if there are no
objectsin the array.

— (void)removeObj ect: (id)anObject Removes all occurrences of anObject. isEqual: is used to
test for anObject.

— (void)removeODbjectAtlndex: (unsigned int)index ~ Removes the object at index and moves all elements
beyond index up one dot to fill the gap. Raises
NSRangeException if index is outside of the bounds of
the array.

— (void)removeObjectl dentical To: (id)anObject Removes all elements having the same id as anObject.

— (void)removeObj ectsFroml ndices: (unsigned int*)indices
numl ndices: (unsigned int)count Removes objects at the positions specified in the indices
array, which has count elements. Raises
NSRangeException if any of theindicesis outside of
the bounds of the array. This method is provided for
efficiency reasons; it will not work if the receiver isa
proxy to an array in another process.

— (void)removeODbjectslnArray: (NSArray *)other Array
Removesfrom the receiver the objectsfound in other Array.

2-80 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Replacing Objects
— (void)replaceObjectAtindex: (unsigned int)index Replaces the object at index with anObject. Raises

withObject: (id)anObject NSInvalidArgumentExceptionif anObjectisnil. Raises
NSRangeException if index is not within the bounds of
the array.
— (void)setArray: (NSArray *)other Array Sets the contents of the receiver to the elementsin
otherArray

Sorting Elements

— (void)sortUsingFunction:(int (*)(id elementl, id el ement2,void * user Data))comparator
context: (void *)context Sortsthe receiver’'s elements in ascending order as defined
by the comparison function comparator. context is
passed as the function’s third argument.

— (void)sortUsingSelector : (SEL)compar ator Sortsthe receiver’'s elementsin ascending order as defined
by the comparison method comparator.

OpenStep Specification—10/19/94 Classes: NSMutableArray 2-81

NSMutableCharacterSet

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCopying, NSMutableCopying
NSCoding, NSCopying, NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSMutableCharacterSet class declares the programmatic interface to objects that construct mutable
descriptions of character setsin the Unicode character encoding. Having constructed such character set
descriptions using methods described in the NSCharacterSet class, you can use the methods described here to
modify the character sets dynamically.

Adding and Removing Characters

— (void)addChar acter slnRange: (NSRange)aRange Adds to the receiver the Unicode characters whose values
are given by aRange.

— (void)addCharacter slnString: (NSString *)aString Adds the charactersin aString to those in the receiver.

— (void)removeChar acter slnRange: (NSRange)aRange
Removes from the receiver the Unicode characters whose
values are given by aRange.

— (void)removeChar acter slnString: (NSString *)aString
Removes from the receiver the charactersin aString.

Combining Character Sets

— (void)for mi nter sectionWithChar acter Set: (NSCharacter Set *)other Set
Modifies the receiver so that it contains only those
charactersthat exist in both the receiver and in other Set.

— (void)formUnionWithChar acter Set: (NSCharacterSet *)other Set
Modifies the receiver so that it contains al characters that
exist in either the receiver or other Set, barring
duplicates.

2-82 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Inverting a Character Set

— (void)invert Replaces all of the charactersin the receiver with al the
charactersit didn’t previously contain.

OpenStep Specification—10/19/94 Classes: NSMutableCharacterSet 2-83

NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSData)
NSObject (NSObject)

Declared In: Foundation/NSData.h

Foundation/NSSerialization.h

Class Description

The NSMutableData class declares the programmatic interface to objects that contain modifiable data in the form
of bytes. This class inherits all read-only access methods from its superclass, NSData, and declares only those
methods that permit the modification of the data.

NSMutableData's two primitive methods—mutableBytes and setlL ength:—provide the basis for al the other
methods in its interface. The mutableBytes method returns a pointer for writing into the bytes contained in the
mutable data object. setL ength: alows you to truncate or extend the length of a mutable data object.

The appendBytes:length: and appendData: methods et you append bytes or the contents of another data object
to amutable data object. You can replace arange of bytesin a mutable data object with either zeroes (using the
resetByteslnRange: method), or with different bytes (using the replaceBytesl nRange: withBytes. method).

This class declares various serialization methods that enable architecture-independent serialization of arbitrary
Objective C types.

Creating an NSMutableData Object

+ (id)allocWithZone: (NSZone *)zone Creates and returns an uninitialized mutable data object
from zone.

+ (id)datawithCapacity: (unsigned int)numBytes Creates and returns a mutable data object, initially
allocating enough memory to hold numBytes bytes.

+ (id)datawithL ength: (unsigned int)length Creates and returns amutabl e data object, giving it enough
memory to hold length bytes. Fills the object with
zeroes up to length.

— (id)initWithCapacity: (unsigned int)capacity Initializes a newly allocated mutable data object, giving it
enough memory to hold capacity bytes. Sets the length
of the data object to 0.

— (id)initWithL ength: (unsigned int)length Initializes a newly allocated mutable data object, giving it

enough memory to hold length bytes. Fills the abject
with zeroes up to length.

2-84 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Adjusting Capacity

— (void)increasel engthBy: (unsigned int)extraLength Increases the length of a mutable data object by

— (void *)mutableBytes

— (void)setL ength: (unsigned int)length

Appending Data

— (void)appendBytes:(const void *)bytes
length: (unsigned int)length

— (void)appendData: (NSData *)other

Modifying Data
— (void)replaceBytesl nRange: (NSRange)aRange
withBytes: (const void *)bytes

— (void)resetBytesl nRange: (NSRange)aRange

Serializing Data

extraLength zero-filled bytes.

Returns a pointer to the bytesin a mutabl e data object,
enabling you to modify the bytes.

Extends or truncates the length of a mutabl e data object by
length bytes. If the mutable data object is extended, the
additional bytes are zero-filled.

Appends length bytes to a mutable data object from
the buffer bytes.

Appends the contents of the data object other to the
receiver.

Replacesthereceiver's byteslocated in aRange with bytes.
Raises an NSRangeException if aRangeis not within
the range of the receiver's data.

Replacesthereceiver’sbyteslocated in aRange with zeros.
Raises an NSRangeException if aRange is not within
the range of the receiver's data.

— (void)serializeAlignedBytesL ength: (unsigned int)length

— (void)serializeDataAt:(const void *)data
of Obj CType: (const char *)type
context:

Prepares bytes for an appendBytes:length: invocation by

serializing them. If the length of the byteswill cause
extension past the page size, this method encodes
header information, creating a hole so that all bytesin
the data object are aligned on page boundaries.

Serializes whatever data element is referenced by data,

interpreting it by the Objective C type specifier type.
If the data element is an object other than an instance of

(id <NSObjCTypeSerializationCallBack>)callback NSDictionary, NSArray, NSString, or NSData, further

OpenStep Specification—10/19/94

definition of the object can occur through a callback
from object callback. All Objective C types are
currently supported except unionsand void *. Pointers
refer to asingleitem.

Classes: NSMutableData 2-85

— (void)serializel nt:(int)value Serializes the integer value by encoding it as a character

representation.
— (void)serializel nt: (int)value Serializes the integer value by encoding it as a character
atl ndex: (unsigned int)index representation and replaces the encoded value at the
specified index in the data.
— (void)serializel nts: (int *)intBuffer Serializes numints count of integers in intBuffer by
count: (unsigned int)numints encoding each integer as a character representation.
— (void)serializel nts: (int *)intBuffer Serializes numints count of integersin intBuffer by
count: (unsigned int)numints encoding each integer, starting at the specified
atl ndex: (unsigned int)index index, and replacing each corresponding integer

encoding serialy.

2-86 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSMutableDictionary

Inherits From: NSDictionary : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSDictionary)
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

Class Description

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable associations
of keys and values. With its two efficient primitive methods—set Obj ect:forKey: and removeObject:for Key:—
this class adds modification operations to the basic operations it inherits from NSDictionary.

The other methods declared here operate by invoking one or both of these primitives. The derived methods provide
convenient ways of adding or removing multiple entries at atime.

When an entry is removed from a mutable dictionary, the key and val ue objects that make up the entry receive a
release message, which can cause them to be deallocated. Note that if your program keeps a reference to such
objects, the reference will become invalid unless you remember to send the object aretain message beforeit’s
removed from the dictionary. For example, the third statement below could result in arun-time error, except for the
retain message in the first statement:

id anObject = [[aDictionary objectForKey:theKey] retain];
[aDictionary removeObjectForKey:theKeyl] ;
[anObject someMessage] ;

Allocating and Initializing

+ (id)allocWithZone: (NSZone *)zone Creates and returns an uninitialized NSMutableDictionary
in zone.

+ (id)dictionaryWithCapacity: (unsigned int)aNuml tems
Creates and returns an NSMutableDictionary, giving it
enough allocated memory to hold numEntries entries.

— (id)initWithCapacity: (unsigned int)aNumltems Initializes anewly allocated NSMutableDictionary, giving
it enough allocated memory to hold numEntries entries.

OpenStep Specification—10/19/94 Classes: NSMutableDictionary 2-87

Adding and Removing Entries

— (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary
Adds the entries from otherDictionary to the receiver.

— (void)removeAllObjects Empties the receiver of itsentries.

— (void)removeObj ectFor K ey: (id)theKey Removes theKey and its associated value object from the
dictionary. Raises NSlnvalidArgumentException if
aKeyisnil.

— (void)removeODbjectsFor Keys: (NSArray *)keyArray
Removesfromthereceiver one or moreentriesasidentified
by the keysin keyArray.

— (void)setObject: (id)yanObject Addsan entry tothereceiver, consisting of anObject andits
forKey:(id)aKey corresponding key aKey. Raises
NSInvalidArgumentException if either anObject or
aKey isnil.

— (void)setDictionary: (NSDictionary *)otherDictionary
Sets the contents of the receiver to the keys and valuesin
other.

2-88 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSMutableSet

Inherits From:

Conforms To:

Declared In:

Class Description

NSSet : NSObject

NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Foundation/NSSet.h

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of objects.
NSMutableSet provides support for the mathematical concept of aset. A set, both in its mathematical sense, andin
the OpenStep implementation of NSMutableSet, is an unordered collection of distinct elements. OpenStep also
provides the NSCountedSet class for a mutable set that can contain multiple instances of the same element, and
provides the NSSet class for creating and managing immutable sets. In general, you should use NSSet unless you
really need a mutable set.

Use set objects as an alternative to array objects when the order of elementsis not important, but performancein
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objectsin a set must respond to hash and isEqual: methods. See the NSObject protocol for details on hash and
isEqual:.

Generally, you instantiate an NSMutableSet object by sending one of the set... methods to the NSMutableSet class
object, as described in the method descriptions for NSSet. These methods return an NSM utableSet object
containing the elements (if any) you passin as arguments. Newly created instances of NSMutableSet created by
invoking the set method can be populated with objects using any of theinit... methods. initWithObjects:: isthe
designated initializer for this class.

Objects are added to an NSMutableSet using addObj ect:, which adds a single specified object to the set,
addObjectsFromArray:, which adds all objects from a specified array to the set, or by unionSet:, which adds all
the objects from another set to this set.

Objects are removed from an NSMutableSet using any of the methods inter sectSet:, minusSet:,
removeAllObjects, or removeObject..

OpenStep Specification—10/19/94 Classes: NSMutableSet 2-89

Allocating and Initializing an NSMutableSet
+ (id)allocWithZone: (NSZone *)zone

+ (id)setWithCapacity: (unsigned)numltems

— (id)initWithCapacity: (unsigned)numitems

Adding Objects
— (void)addObj ect: (id)object

— (void)addObjectsFromArray: (NSArray *)array

— (void)unionSet: (NSSet *)other

Removing Objects

— (void)inter sectSet: (NSSet *)other

— (void)minusSet: (NSSet *)other

— (void)removeAllObjects

— (void)removeObj ect: (id)object

2-90 Chapter 2: Foundation Kit

Creates and returns an uninitialized set object in zone.

Creates and returns a set object, giving it enough allocated
memory to hold numltems objects.

Initializes anewly allocated set object, giving it enough
alocated memory to hold numltems objects.

Adds object to the set, unless object is equal to some object
aready in the set.

Adds to the set al the objectsin array, by caling
addObject: for each one.

Addsto the receiving set al the objectsin other, by calling
addObject: for each one.

Removes from the receiving set every object that’s not
equal to any object in other, by calling removeObject:
for each one.

Removesfrom the receiving set every object that’s equal to
some object in other, by calling removeODbject: for
each one.

Empties the set of all its elements. (This method doesn’t
call removeObject:.)

If any member of the receiving set is equal to object, this
method removes that object from the set.

OpenStep Specification—10/19/94

NSMutableString

Inherits From: NSString : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSString)
NSObject (NSObject)

Declared In: Foundation/NSString.h

Class Description

NSMutableString (and NSString) declare the programmatic interface for objects that create and managemutable
representati on-independent character strings. For amore general overview of string classes, see the description of
NSString.

NSMutableString (and NSString) are abstract classes for string manipulation. NSMutableString declares the
interface to objectsthat inherit all the capabilities of NSString objects, but in addition allow for modification of the
string data. NSString and NSMutableString provide factory methods that return autorel eased instances of
unspecified subclasses of strings.

You can instantiate an NSMutableString object by sending any of the stringWith... methodsto the
NSMutableString class object. This set of methods also includeslocalizedStringWithFor mat:. A newly alocated
NSMutableString object can aso beinitialized using theinitWithCapacity: method, to set the string to a specified
capacity.

Creating Temporary Strings

+ (NSMutableString *)localizedStringWithFor mat: (NSString *)format, ...

Returns a string created by using format asa printf() style
format string, and the following arguments as values to
be substituted into the format string. The user’s default
localeis used for format information.

+ (NSMutableString *)stringWithCString: (const char *)zeroTerminatedBytes
Returns a mutable string containing the charactersin
zeroTerminatedBytes, which must be null-terminated.
The zeroTer minatedBytes string should contain bytesin
the default C string encoding.

+ (NSMutableString *)stringWithCString: (const char *)bytes
length: (unsigned int)length Returnsamutabl e string containing length charactersmade
from bytes. This method doesn’t stop at anull byte.
bytes should contain bytesin the default C string
encoding.

OpenStep Specification—10/19/94 Classes: NSMutableString 2-91

+ (NSMutableString *)stringWithCapacity: (unsigned int)capacity
Returns an empty mutable string, using capacity as a hint
for how much initial storage to reserve.

+ (NSMutableString *)stringWithChar acter s:(const unichar *)characters
length: (unsigned int)length Returns a mutable string containing characters. The first
length charactersare copied into the string. Thismethod
doesn’t stop at anull character.

+ (NSMutableString *)stringWithContentsOfFile: (NSString *)path
Returnsastring containing the contents of thefile specified
by path. This method attempts to determine the
encoding for thefile. The string is assumed to be in
Unicode encoding, but if the encoding i s determined not
to be Unicode, the default C string encoding is used
instead.

+ (NSMutableString *)stringWithFor mat: (NSString *)format,...

Returns a mutable string created by using format as a
printf() style format string, and the subsequent
arguments as values to be substituted into the format
string.

Initializing a Mutable String

—initWithCapacity: (unsigned int)capacity Initializesanewly allocated mutable string object, giving it
enough allocated memory to hold capacity characters.

Modifying a String

— (void)appendFor mat: (NSString *)format,... Adds a constructed string to the receiver. The new
charactersare created by using format asaprintf() style
format string, and the following arguments as values to
be substituted into the format string. Invokes
replaceChar acter sinRange:withString: as part of its
implementation.

— (void)appendString: (NSString *)astring Adds the characters of aString to end of the receiver.
Invokes replaceChar acter slnRange:withString: as
part of itsimplementation.

— (void)deleteChar acter slnRange: (NSRange)range
Removes from the receiver the charactersin range. This
method raises an NSStringBoundsError exception if
any part of range lies beyond the end of the string.
Invokes replaceCharacter slnRange:withString: as
part of itsimplementation.

2-92 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (void)insertString: (NSString *)aString Inserts the characters of aString into the receiver, such that
atl ndex: (unsigned)index the new characters begin at index and the existing
character fromindex to the end are shifted by the length
of aSring. Thismethod rai sesan NSStringBoundsError
exception if index lies beyond the end of the string.
Invokes replaceCharacter slnRange:withString: as
part of itsimplementation.

— (void)replaceChar acter sl nRange: (NSRange)aRange
withString: (NSString *)aString Inserts the characters of aString into the receiver, such that
they replace the charactersin aRange. This method
raises an NSStringBoundsError exception if any part of
aRange lies beyond the end of the string.

— (void)setString: (NSString *)aString Replaces the characters of the receiver with thosein
astring.

OpenStep Specification—10/19/94 Classes: NSMutableString 2-93

NSNotification

Inherits From: NSObject
Conforms To: NSCopying

NSObject (NSObject)
Declared In: Foundation/NSNoatification.h

Class Description
NSNotification objects provide a flexible way to transmit event information between objects.

M essage passing—invoking a method—is the standard way to convey information between objects. However, this
requires the object sending the message to know who the receiver is. At times this explicit binding of two objects
is undesirable—most notably because it would tie two otherwise independent subsystems. For these instances, a
looser broadcast model is introduced: An object posts a notification, which is dispatched to the appropriate
receivers through a notification center.

An object may post an NSNatification object (referred to as a notification object or simply, a notification), which
containsinformation about an object: the notification’s name, its sender, and an optional dictionary containing other
information. Other objects can register themsel ves as observersto receive notification objects when they are posted.
When the event happens, the registered objects receive notifications about it. The object posting the NSNatification
object, the object the notification is about, and the observer of the notification may all be different objects.

An NSNotificationCenter object registers observers for events and notifies the observers if these events occur. An
object may ask an NSNtificationCenter object (also known as a notification center) to observe an event regarding
another object. If the event occurs, the posting object tells the notification center to notify its observersthat this
condition has occurred. The natification center then sends a notification to all observing objects. (See the class
specification of NSNotificationCenter for more on posting notification objects.)

Thisnotification model frees an object from concern about what objects may want to observeit. An object involved
with an event—or another object—may simply post a notification about that event without knowing what objects—
if any—are observing the event. The notification center takes care of distributing notifications to registered
observers. Another benefit of this model isto allow multiple objectsto listen for notifications, an effect that might
otherwise require explicitly setting up an array.

You instantiate a notification object directly by sending the notificationWithName: object: or
notificationWithName: obj ect: user | nfo: messages to the NSNotification class object. You can aso create
notifications indirectly through the NSNatificationCenter class using the postNotificationName: object: and
postNotificationName: object: user Info: convenience methods.

You can subclass NSNotification to contain information in addition to the notification name, sender, and dictionary.

NSNotification objects are immutable objects.

2-94 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

The NSNatification class adopts the NSCopying protocol, making it possible to treat notifications as
context-independent values that can be copied and reused. You can put notificationsin an array and send the copy

message to that array, which recursively copies every item. Thisessentially allows clientsto deal with notifications
asfirst class values that can be copied by collections.

Creating Notification Objects

+ (NSNotification *)notificationWithName: (NSString *)aName

obj ect: (id)anObject Returns a notification object that associates the name
aName with the object anObject.

+ (NSNatification *)notificationWithName: (NSString * JaName
obj ect: (id)anObject Returns a notification object that associates the name
user I nfo:(NSDictionary *)userinfo aName with the object anObject and the dictionary of
arbitrary data userinfo. userInfo may be nil.

Querying a Notification Object

— (NSString *)name Returns the name of the notification.

— (id)object Returns the object (such as the sender) that’s associated

with this notification.

— (NSDictionary *)userInfo Returns a dictionary object associated with this

notification. Returns nil if there is no such object.

OpenStep Specification—10/19/94 Classes: NSNotification 2-95

NSNotificationCenter

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSNoatification.h

Class Description

AnNSNotificationCenter object (or simply, notification center) isessentially anatification dispatch table. It notifies
all observers of events meeting specific criteria of notification and sender. This event information is encapsulated
in NSNotification objects, also known as notification objects, or simply, notifications. Client objects register
themselves as observers of a specific notification originating in another object. When the condition occursto signal
anotification, some object (which may or may not be the object observed) posts an appropriate notification object
to the notification center. (See the class specification of NSNotification for more on notification objects.) The
notification center dispatches a message to each observer (using the selector provided by the observer), with the
notification as the sole argument.

An object registersitself to observe notifications by the addObser ver : selector :name: obj ect: method, specifying
the object and associated notification it wants to see. However, the observer need not specify both of these
parameters. If it specifies only the object, it will see all notifications associated with that object. If the object
specifies only a notification name to observe, it will see that notification for any object whenever it's posted.

The methods postNotificationName: object: and postNotificationName: object: user I nfo: are provided as
convenience methods, which both create and post notifications.

Each task has a default notification center.

Asan example of using the notification center, suppose your program can perform anumber of conversions on text
(for instance, MIF to RTF or RTF to ASCII). You have defined a class of objects that perform those conversions,
Convertor. Convertor objects might be added or removed during program execution. Your program has a client
object that wants to be notified when convertors are added or removed, allowing the application to reflect the
available optionsin a pop-up list. The client object would register itself as an observer by sending the following
messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (objectAddedToConvertorList:)
name:@"NSConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector (objectRemovedFromConvertorList:)
name:@"NSConverterRemoved" object:nil];

2-96 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

When a user installs or removes a converter, the Convertor sends one of the foll owing messages to the notification
center:

[[NSNotificationCenter defaultCenter]
postNotificationName:@"NSConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]
postNotificationName:@"NSConverterRemoved" object:self];

The notification center identifies all observers who are interested in the “NSConverterAdded” or
“NSConverterRemoved” notifications by invoking the method they specified in the selector argument of
addObserver :selector:name: object:. In the case of our example observer, the selectors are
objectAddedToConvertorList: and objectRemovedFromConvertorList:. Assume the Convertor class has an
instance method convertor Name that returns the name of the Convertor object. Then the
objectAddedToConvertorList: method might have the following implementation:

- (void)objectAddedToConvertorList: (NSNotification *)notification

{

Convertor *addedConvertor = [notification object];

// Add this to our popup (it will only be added if not there)...
[myPopUpButton addItem: [addedConvertor convertorName]];

}

The convertors don’t need to know anything about the pop-up list or any other aspect of the user interface to your
program.

Accessing the Default Notification Center
+ (NSNotificationCenter *)defaultCenter Returns the default notification center object; used for

generic notifications.

Adding and Removing Observers

— (void)addObser ver : (id)anObser ver Registers anObserver and aSelector with the receiver so
selector: (SEL)aSelector that anObserver receives an aSelector message when a
name: (NSString *)aName notification of name aName s posted to the notification
obj ect: (id)anObject center by anObject. If anObject isnil, observer will get

posted whatever the object is. If aName s nil, observer
will get posted for al notifications that match anObject.

— (void)removeObser ver : (id)anObserver Removes anObserver as the observer of any notifications
from any objects.
— (void)removeObser ver : (id)anObser ver Removes anObserver as the observer of aName
name: (NSString * JaName notifications from anObject.
obj ect:anObject

OpenStep Specification—10/19/94 Classes: NSNotificationCenter 2-97

Posting Notifications
— (void)postNotification: (NSNotification *)aNotification

Posts aNotification to the notification center. Raises
NSInvalidArgumentException if the name associated
with aNotification is nil.

— (void)postNotificationName: (NSString *)aName Creates a notification object that associates aName and

obj ect: (id)anObject anObject and postsit to the notification center.

— (void)postNotificationName: (NSString *)aName Cresates a notification object that associates aName and
obj ect: (id)anObject anObject and postsit to the notification center. userinfo
user I nfo: (NSDictionary *)userInfo isadictionary of arbitrary datathat will be passed with

the notification. userlnfo may be nil.

2-98 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSNotificationQueue

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSNatificationQueue.h

Class Description

NSNotificationQueue objects (or simply, natification queues) act as buffers for notifications centers (instances of
NSNoatificationCenter). A notification queue maintains notifications (instances of NSNatification) generally in a
FIFO order (First In First Out). When a notification rises to the “top” of the queue, the queue postsit to the
notification center, which in turn dispatches the notification to all objects registered as observers.

NSNotificationQueue contributes two important features to OpenStep’s notification mechanism: asynchronous
posting and the coal escing of notifications. With NSNotificationCenter’s postNotification: and itsvariants, you can
post a notification immediately to a notification center. However, the invocation of the method is synchronous:
Before the posting object can resumeitsthread of execution, it must wait until the notification center dispatchesthe
notification to all observers and returns. With NSNotificationQueue's enqueueNotification: postingStyle: and
enqueueNotification: postingStyle: coalesceM ask: for M odes:, however, you can post a notification
asynchronously by putting it on the queue. These methods immediately return to the invoking object after putting
the notification in the queue.

Posting to a notification queue can occur in one of three different styles. The posting style is an argument to both
enqueueNotification:... methods:

* NSPostWhenldle. The notification is posted when the run loop isidle.
* NSPostASAP. The notification is posted as soon as possible.
* NSPostNow. The notification is posted immediately to the notification center.

Note: See“Enqueuing with the Different Posting Styles,” below, for details on and examples of enqueuing
notifications with the three postingStyle: constants.

What is the difference between enqueuing notifications with NSPostNow and posting notifications
(postNotification:)? Both post notifications immediately (but synchronously) to the notification center. The
differenceisthat enqueueNotification:... (with NSPostNow as posting style) coal esces notifications in the queue
before posting while postNotification: does not.

OpenStep Specification—10/19/94 Classes: NSNotificationQueue 2-99

Coalescing is aprocess that removes natificationsin the queue that are similar to the notification just enqueued (or
posted, if posting style is NSPostNow. The notification queue scans the notifications in the queue for those with
attributes matching the new notification and removes them, except for the naotification that is topmost in the queue
(closest to being posted). You indicate the criteriafor similarity by specifying the NSNotificationCoal escing
constants in the third argument of enqueueNotification: postingStyle: coalesceM ask:for M odes: (OR them in if
multiple):

* NSNoatificationNoCoalescing. Do not coalesce notifications in the queue.
» NSNotificationCoal escingOnName. Coal esce notifications with the same name.
« NSNotificationCoalescingOnSender. Coalesce notifications with the same sender.

Every task has a default notification queue, which is associated with the task’s default notification center. You can
create your own notification queues, and have multiple queues per center and task; but you can have only one
notification center per task. NSNotificationQueue is a public, concrete class; instances of it are mutable.

Enqueuing with the Different Posting Styles

Any notification enqueued with the NSPostASAP posting style is posted to the notification center when the code
executing in the current run loop callout completes. Callouts can be Application Kit event messages, file descriptor
changes, timers, or another asynchronous notification. You'd typically use the NSPostASAP posting style for an
expensive resource, like the Display PostScript server. When many clients draw on the window buffer during a
callout, it's expensiveto flush the buffer to the Display PostScript server after every draw operation. Sointhiscase,
each draw... method enqueues some notification such as “FlushTheServer” with coalescing on name and sender
specified, and a posting style of NSPostASAP. Asaresult, only one of those notificationsis dispatched at the end
of the current callout, and the window buffer is flushed only once.

A natification enqueued with the NSPostI dle posting style is posted only when the run loop isin await state. In
thisstate, thereisnothing in therunloop’sinput channels, beit timers or other asynchronous notifications. A typical
exampl e of engqueuing with the NSPostI dle posting style occurs when the user types text, and the program displays
the size of the text in bytes somewhere. It would be very expensive (and not very useful) to update the displayed
size after each character the user types, especialy if the user types fast. In this case, the program enqueues a
notification after each character typed such as* ChangeTheDisplayedSize” with coalescing turned on and aposting
style of NSPostWhenl dle. When the user stops typing, the single “ ChangeTheDisplayedSize” notification in the
gueue (due to coaescing) is posted when the run loop isin await state and the display is updated.

A notification enqueued with NSPostNow is posted immediately to the notification center. You engqueue a
notification with NSPostNow (or post one with NSNotificationCenter’s postNotification:) when you do not
require asynchronous calling behavior. For many programming situations, synchronous behavior is not only
allowable but desirable; you want the notification center to return after dispatching so you can be sure that
observing objects have received the notification. Of course, you should engqueue with NSPostNow rather than use
postNoatification: when there are similar notifications in the queue that you want to remove through coalescing.

2-100 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Creating Notification Queues

+ (NSNotificationQueue *)defaultQueue Returns the default NSNotificationQueue object for the
current task. This object always uses the default
notification-center object for the same task.

—(id)init Initializes and returns an NSNotificationQueue object that
uses the default notification-center object.

— (id)initwithNotificationCenter : (NSNotificationCenter *)notificationCenter
Initializes and returns an NSNotificationQueue object that
uses the natification-center object specified in
notificationCenter.

Inserting and Removing Notifications From a Queue

— (void)dequeueNatificationsM atching: (NSNotification *)notification
coalesceM ask: (unsigned int)coal esceMask Removes al notifications from the queue that match the
notification’s attributes as specified by coalesceMask.
The mask (set through NSNotificationCoalescing
constants) can specify notification name, notification
sender, or both name and sender.

— (void)enqueueNotification: (NSNotification *)notification
postingStyle: (NSPostingStyle)postingStyle Puts a notification in the queue that the queue will post to
the notification center at the time indicated by
postingStyle. The notification queue postsin all runloop
modes, and it coal esces only naotifications in the queue
that match both the name and sender of notification

— (void)enqueueNotification: (NSNotification *)notification

postingStyle: (NSPostingStyle)postingStyle Puts a natification in the queue that the queue will post to

coalesceM ask: (unsigned int)coal esceMask the notification center at the time indicated by

forModes: (NSArray *)modes postingStyle, but only if the runloop isin amode
identified by one of the string objects in the modes
array. The notification queue coal esces rel ated
notificationsin the queue as specified by coal esceMask.
If modesisnil, al runloop modes are valid for posting.

OpenStep Specification—10/19/94 Classes: NSNotificationQueue 2-101

NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCoding, NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h

Class Description

NSNumber objects provide an object-oriented wrapper for the standard C-language number datatypes(int, double,
etc.). The Foundation Kit's collection classes can store only objects, so thisclass providesaway to prepare numbers
of various types for use with the collection classes.

NSNumber, which inherits from NSValue, provides methods for creating number objects that contain data of a
specified type. It aso provides methods for extracting data from a number object and casting the data to be of a
particular type. For determining whether two number objects are equal, NSNumber providesthe compar e: method.

Allocating and Initializing

+ (NSNumber *)number WithBool:(BOOL)value Creates and returns a number object representing val ue of
the type BOOL.

+ (NSNumber *)number WithChar :(char)value Creates and returns a number object representing value of
the type char.

+ (NSNumber *)number WithDouble: (double)value
Creates and returns a number object representing val ue of
the type double.

+ (NSNumber *)number WithFloat: (float)value Creates and returns a number object representing value of
the type float.

+ (NSNumber *)number Withlnt:(int)value Creates and returns a number object representing value of
thetypeint.

+ (NSNumber *)number WithL ong: (long)value Creates and returns a number object representing value of

the type long.

+ (NSNumber *)number WithL ongL ong: (long long)value
Creates and returns a number object representing value of
the type long long.

+ (NSNumber *)number WithShort: (short)value Creates and returns a number object representing value of
the type short.

2-102 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

+ (NSNumber *)number WithUnsignedChar : (unsigned char)value
Creates and returns a number object representing value of
the type unsigned char.

+ (NSNumber *)number WithUnsignedI nt: (unsigned int)value
Creates and returns a number object representing value of
the type unsigned int.

+ (NSNumber *)number WithUnsignedL ong: (unsigned long)value
Creates and returns a number object representing val ue of
the type unsigned long.

+ (NSNumber *)number WithUnsignedL ongL ong: (unsigned long long)value
Creates and returns a number object representing value of
the type unsigned long long.

+ (NSNumber *)number WithUnsignedShort: (unsigned short)value
Creates and returns a number object representing value of

the type unsigned short.
Accessing Data

—(BOOL)boolValue Returns the receiver’s value as a boolean value.

— (char)charValue Returns the receiver’'s value as a character value.

— (double)doubleValue Returns the receiver’'s value as a doubl e precision floating
point value.

— (float)floatValue Returns the receiver’s value as a single precision floating
point value.

— (int)intValue Returns the receiver’s value as ainteger value.

— (long long)longL ongValue Returnsthereceiver'svalue asalong long double precision
floating point value.

— (long)longValue Returns the receiver’s value as along double precision
floating point value.

— (short)shortValue Returns the receiver’s value as a short integer value.

— (NSString *)stringValue Returns the receiver's value as a string contained in an
NSString object.

— (unsigned char)unsignedChar Value Returnsthe receiver’svalue as an unsigned character value.

— (unsigned int)unsignedi ntValue Returns the receiver’s value as an unsigned integer value.

— (unsigned long long)unsignedL ongL ongValue Returns the receiver’'s value as an unsigned long long
double precision floating point value.

OpenStep Specification—10/19/94 Classes: NSNumber 2-103

— (unsigned long)unsignedL ongValue Returns the receiver’s value as an unsigned long double
precision floating point value.

— (unsigned short)unsignedShortValue Returns the receiver’s value as an unsigned short integer
value.

Comparing Data

— (NSComparisonResult)compar e: (NSNumber *)other Number
Comparesthereceiver to otherNumber, using ANSI Crules
for type coersion, and returns an NSComparisonResult.

2-104 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSObject

Inherits From: none (NSObject is the root class)

Conforms To: NSObject

Declared In: Foundation/NSObject.h
Foundation/NSRunL oop.h

Class Description

NSObject istheroot class of all ordinary Objective C inheritance hierarchies; it has no superclass. Itsinterface
derivesfrom two sources. the methodsit declares directly and those declared in the NSObject protocol. Itsinterface
isdivided in thisway so that objectsinheriting from other root classes (notably NSProxy) can stand in for ordinary
objects without having to inherit from NSObject. The following discussion makes no distinction between the
methods declared in this class and those declared in the NSObject protocol.

From NSObject, other classesinherit a basic interface to the run-time system for the Objective C language. It's
through NSObject that instances of all classes obtain their ability to behave as objects. Among other things, the
NSODbject class providesinheriting classeswith aframework for creating, initializing, deall ocating, comparing, and
archiving objects, for performing methods selected at run-time, for querying an object about its methods and its
position in the inheritance hierarchy, and for forwarding messages to other objects. For example, to ask an object
what classit belongsto, you'd send it aclass message. To find out whether it implementsaparticular method, you'd
send it arespondsToSelector: message

The NSObject classis an abstract class; programs use instances of classes that inherit from NSObject, but never of
NSObject itself.

Initializing an Object to Its Class

Every object is connected to the run-time system through itsisa instance variable, inherited from the NSObject

class. isaidentifies the object’s class; it pointsto a structure that’'s compiled from the class definition. Through isa,
an object can find whatever information it needs at run time—such asits placein theinheritance hierarchy, the size
and structure of itsinstance variables, and the location of the method implementationsit can perform in response

to messages.

Because all ordinary objectsinherit directly or indirectly from the NSObject class, they all have thisvariable. The
defining characteristic of an “object” isthat itsfirst instance variable is an isa pointer to a class structure.

Theinstallation of the class structure—the initialization of isa—is one of the responsibilities of the alloc and
allocWithZone: methods, the same methods that create (allocate memory for) new instances of a class. In other
words, classinitialization is part of the process of creating an object; it’s not left to the methods, such asinit, that
initialize individual objects with their particular characteristics.

OpenStep Specification—10/19/94 Classes: NSObject 2-105

Instance and Class Methods

Every object requires an interface to the run-time system, whether it’s an instance object or a class object. For
example, it should be possible to ask either an instance or a class whether it can respond to a particular message.
So that this won’t mean implementing every NSObject method twice, once as an instance method and again as a
class method, the run-time system treats methods defined in the root class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methods—those defined in the class and those inherited from the classes aboveit
in the inheritance hierarchy—but generally not to instance methods. However, the run-time system gives all class
objects access to the instance methods defined in the root class. Any class object can perform any root instance
method, provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform NSObject’s respondsToSelector: and
perform:withObject: instance methods:

SEL method = @selector (riskAll:);

if ([MyClass respondsToSelector:method])
[MyClass perform:method withObject:self];

When a class object receives a message, the run-time system looks first at the receiver’s set of class methods. If it
fails to find a class method that can respond to the message, it looks at the set of instance methods defined in the
root class. If the root class has an instance method that can respond (as NSObject does for respondsToSel ector :
and per form:withObject:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root class. If MyClassin the
exampl e above had reimplemented either respondsToSelector: or perform:withObject:, those new versions of
the methods would be available only to instances. The class object for MyClass could perform only the versions
defined in the NSObject class. (Of course, if MyClass had implemented respondsToSelector: or
perform:withObject: as class methods rather than instance methods, the class would perform those new versions.)

Initializing the Class

+ (void)initialize Initializes the class before it’s used (before it receivesits
first message).

Creating and Destroying Instances

+ (id)alloc Returns anew, uninitialized instance of the receiving class.
+ (id)allocWithZone: (NSZone *)zone Returns anew, uninitialized instance of the receiving class
in zone.

2-106 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

+ (id)new Allocates a new instance of the receiving class, sendsit an
init message, and returnstheinitialized object returned
by init. This method is simply a convenient cover for
the alloc and init methods.

— (id)copy Invokes copyWithZone:. This method isimplemented in
NSObject as a convenience to subclasses. A subclass
need override only copyWithZone: for both copy and
copyWithZone: to operate correctly.

— (void)dealloc Deallocates the memory occupied by the receiver.

— (id)init Implemented by subclasses to initialize a new object (the
receiver) immediately after memory for it has been
allocated.

— (idymutableCopy Invokes mutableCopyWithZone:. Thismethod is

implemented in NSObject as a convenience to
subclasses. A subclass need override only
mutableCopyWithZone: for both mutableCopy and
mutableCopyWithZone: to operate correctly.

Identifying Classes

+ (Class)class Returnsself. Sincethisisaclassmethod, it returnsthe class
object.
+ (Class)super class Returns the class object for the receiver’s superclass.

Testing Class Functionality

+ (BOOL)instancesRespondToSelector : (SEL)aSel ector
Returns YES if instances of the class are capabl e of

responding to aSelector messages, and NO if they’'re
not.

Testing Protocol Conformance

+ (BOOL)confor msToProtocoal: (Protocol *)aProtocol
Returns YES if the receiving class conformsto aProtocol,

and NO if it doesn't.

OpenStep Specification—10/19/94 Classes: NSObject 2-107

Obtaining Method Information

+ (IMP)instanceM ethodFor Selector : (SEL)aSelector
Locates and returns the address of the implementation of
the aSelector instance method.

— (IMP)methodFor Selector : (SEL)aSel ector L ocates and returns the address of the receiver’'s
implementation of the aSelector method, so that it can
be called as a function.

— (NSMethodSignature *)methodSignatur eFor Selector : (SEL)aSel ector
Returns an object that contains a description of the
aSelector method, or nil if the aSelector method can't
be found.

Describing Objects

+ (NSString *)description Subclasses override this method to return a
human-readabl e string representation of the contents of
the receiver. NSObject’s implementation simply prints
the name of the receiver’s class.

Posing

+ (void)poseAsClass: (Class)aClass Causes the receiving class to “pose as’ its superclass.

Error Handling

— (void)doesNotRecognizeSel ector : (SEL)aSel ector
Handles aSelector messages that the receiver doesn’'t
recognize.

Sending Deferred Messages

+ (void)cancel PreviousPer for mRequestsWithTar get: (id)aTarget
selector: (SEL)aSelector Cancels previous perform requests having the same target
obj ect: (id)anObject and argument (as determined by isEqual:), and the
same selector. This method removes timers only in the
current run loop, not all run loops.

— (void)performSelector : (SEL)aSel ector Sends an aSelector message to anObject after delay. self
obj ect: (id)anObject and anObject are retained until after the action is
after Delay: (NSTimelnterval)delay executed.

2-108 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Forwarding Messages

— (void)forwar dl nvocation: (NSl nvocation *)anl nvocation
Implemented by subclasses to forward messages to other
objects.

Archiving

— (id)yawakeAfter UsingCoder: (NSCoder *)aDecoder Implemented by subclassesto reinitialize the receiver. The
NSObject implementation of this method simply

returns self.

— (Class)classFor Archiver | dentifiesthe classto be used during archiving. NSObject’s
implementation returns the object returned by
classFor Coder:.

— (Class)classFor Coder I dentifies the class to be used during seriaization. An

NSObject returnsits own class by default.

— (id)replacementObjectFor Archiver : (NSArchiver *)anArchiver
Allows an object to substitute another object for itself
during archiving. NSObject’s implementation returns
the object returned by replacementObjectFor Coder:.

— (id)replacement Obj ectFor Coder : (NSCoder *)anEncoder
Allows an object to substitute another object for itself
during serialization. NSObject’s implementation

returns self.
+ (void)setVersion: (int)version Sets the class version number to version.
+ (int)version Returns the version of the class definition.

OpenStep Specification—10/19/94 Classes: NSObject 2-109

NSProcessiInfo

NSObject

Inherits From:
Conforms To: NSObject (NSObject)

Declared In: Foundation/NSProcessinfo.h

Class Description

The NSProcessl nfo class provides methods to access process-wide information. An NSProcessInfo object can
return such information as the arguments, environment, host name, or process name. The processl nfo class method
returns an NSProcesslinfo object. For example, the following code creates an NSProcessinfo object, which then

provides the name of the current process:

[[NSProcessInfo processInfo]

Getting an NSProcessinfo Object

+ (NSProcessInfo *)process| nfo

Returning Process Information

— (NSArray *)arguments

— (NSDictionary *)environment

— (NSString *)hostName
— (NSString *)processName

— (NSString *)globallyUniqueString

2-110 Chapter 2: Foundation Kit

processName] ;

Returns the NSProcesslnfo object for the process. It is
already initialized. An NSProcessinfo object is created
thefirst time this method isinvoked, and that same
object is returned on each subsequent invocation.

Returns the arguments as an array of NSStrings from the
command line.

Returns adictionary of variables defined for the
environment from which the process was launched.

Returns the name of the host system.

Returns the name of the process under which this
program’s user defaults domain is created, and is the
name used in error messages. It does not uniquely
identify the process.

Returns a globally unique string to identify the process.
This method uses the host name, process ID, and a
timestamp to ensure that the string returned will be
globally unique.

OpenStep Specification—10/19/94

Specifying a Process Name

— (void)setProcessName: (NSString *)newName Sets the name of the process to newName. Warning:
Aspects of the environment like user defaults might
depend on the process name, so be very careful if you

change this. Setting the process name this way is not
thread-safe.

OpenStep Specification—10/19/94 Classes: NSProcessinfo 2-111

NSProxy

Inherits From: none (NXProxy is a root class)
Conforms To: NSObject
Declared In: Foundation/NSProxy

Class Description

The NSProxy class declares the programmatic interface to proxies—objects that stand in for real objects (usually
descendants of the NSObject class), where the real objects may exist within the same or another process, perhaps
even in asystem of adifferent architecture across a network. To the application, the proxy behaves like the real
object, though the real object may not be directly accessible, and in general, instance variables of remote objects
are not accessible.

NSProxy class defines few methods, because proxies respond to few messages directly. Instead, when a proxy
receives amessage it doesn’t respond to, it encodes the message, including the arguments, in an invocation, and
invokes forwar dl nvocation:. Specialized subclasses then direct further processing, such as forwarding the
message to areal object in the same or another process.

Methods defined in this class are methods that the NSProxy classrespondsto directly. Unless otherwise hoted, none
of these methods are forwarded to the proxy’s correspondent.

Your application in general doesn't instantiate NSProxy objects—they’re created as instances of specialized
subclasses. Proxies are reference-counted so that only asingle NSProxy per connection isinstantiated for any real
object.

Creating and Destroying Instances

+ (id)alloc Returns a new, uninitialized instance of the receiving class.

+ (id)allocWithZone: (NSZone *)zone Returns anew, uninitialized instance of the receiving class
in zone.

— (void)dealloc Deallocates the memory occupied by the receiver.

Identifying Classes

+ (Class)class Returnsself. Sincethisisaclassmethod, it returnsthe class
object.

2-112 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Obtaining Method Information

— (NSMethodSignature *)methodSignatur eFor Selector : (SEL)aSel ector

Implemented by subclassesto return an object that contains
adescription of the aSelector method, or nil if the
aSelector method can’t be found. The NSProxy
implementation of this method raises an
NSl nvalidArgumentException exception.

Describing Objects

— (NSString *)description Prints the name of receiver’s class and the hexadecimal
value of theitsid.

Forwarding Messages

— (void)forwar dl nvocation: (NSlnvocation *)invocation

Implemented by subclasses to forward messages to other
objects. The NSProxy implementation of this method
raises an NSlnvalidArgumentException exception.

OpenStep Specification—10/19/94 Classes: NSProxy 2-113

NSRecursiveLock

Inherits From: NSObject
Conforms To: NSLocking

NSObject (NSObject)
Declared In: Foundation/NSL ock.h

Class Description
NSRecursivel ock is used for locks that need to be reacquired by the same thread.

An NSRecursivel ock locks acritical section of code such that a single thread can reaquire the lock multiple times
without deadl ocking, while preventing access by other threads. (Note that thisimpliesthat arecursivelock will not
protect acritical section from asignal handler interrupting the thread holding the lock.) Here is an example where
arecursive lock functions properly but other lock types would deadl ock:

// create the lock only once!

NSRecursiveLock *theLock = [NSRecursiveLock new] ;
/* ...other code... */

[theLock lock];

/* ... possibly a long time of fussing with global data... */
[theLock lock]; /* possibly invoked in a subroutine */
[theLock unlock] ;

[theLock unlock] ;

The NSConditionL ock, NSLock, and NSRecursivelock classes all implement the NSL ocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

Acquiring a Lock

—(BOOL)tryL ock Attemptsto acquire alock. Returns YES if successful and
NO otherwise. This method can be called repeatedly to
produce nested locks.

2-114 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSRunLoop

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSRunL oop.h

Class Description

The NSRunL oop class declares the programmiatic interface to objects that manage input sources. An NSRunL oop
object processesinput for sources such as mouse and keyboard events from the window system, NSTimers, POSI X
file descriptors, and NSConnections, based on a mode argument. A given NSRunL oop object processes input for
input sources associated with a particular mode.

In general, your application won't need to either create or explicitly manage NSRunL oop objects. Each thread has
an NSRunL oop object automatically created for it. The NSA pplication object creates a default thread and therefore
creates a default run loop.

Applications wanting to perform their own explicit run loop management should send the currentRunL oop
message to the NSRunL oop class abject to obtain the NSRunL oop object for the current thread, then invoke one of
the methods described below in “ Running a Run Loop” to obtain input.

Currently defined modes are:

NSDefaultRunL oopMode Use this mode to deal with input sources other than NSConnections. Defined
in the Foundation/NSRunL oop.h header file.

NSConnectionReplyMode Use this mode to indicate NSConnections waiting for replies. Defined in the
Foundation/NSConnection.h header file.

Accessing the Current Run Loop
+ (NSRunLoop *)currentRunL oop Returns the NSRunL oop for the current thread.
— (NSString *)currentM ode Returns the current run loop mode.

— (NSDate *)limitDateFor M ode: (NSString *)mode Pollstimers and platform-specific input managersfor their
limit date (if any). Timerswill fire if appropriate.
Returns nil if there are no input sources for this mode.

OpenStep Specification—10/19/94 Classes: NSRunLoop 2-115

Adding Timers

— (void)addTimer:(NSTimer *)aTimer
forMode: (NSString *)mode

Running a Run Loop
— (void)acceptl nputFor M ode: (NSString *)mode
beforeDate: (NSDate *)limitDate

— (void)run

—(BOOL)runM ode: (NSString *)mode
beforeDate: (NSDate *)limitDate

— (void)runUntilDate: (NSDate *)limitDate

2-116 Chapter 2: Foundation Kit

Registers the timer aTimer with input filter mode. The run
loop causes the timer to fire at its schedul ed fire date.
Notethat timersare removed from modesif they supply
nil astheir fire date.

Runs the run loop, accepting input from the input sources
for the mode specified by mode until the time specified
by limitDate.

Runsthe run loop in the default mode until thereis nothing
to do.

Runs the run loop, accepting input from filter mode
until limitDate or until the earliest limit date for input
sources in this mode. Returns NO without starting the
run loop if there are no limit dates set for input sources
(that is, there's nothing to do).

Runsthe run loop until limitDate or until there are no limit
dates set for input sources (that is, there's nothing to
do).

OpenStep Specification—10/19/94

NSScanner

Inherits From: NSObject
Conforms To: NSCopying

NSObject (NSObject)
Declared In: Foundation/NSScanner.h

Class Description

The NSScanner class declares the programmatic interface to an object that is capable of scanning NSString objects
(strings of characters in the Unicode character encoding), con verting the scanned strings to various numeric
representations, or scanning characters from a character set.

Generally, you instantiate a scanner object by sending one of scanner WithString: or
localizedScanner WithString: methods to the NSScanner class object. Either method returns a scanner object
initialized with the string you passin.

NSScanner provides methods of configuring the behavior of the scan. setCaseSensitive: specifies whether the
scanner will treat upper case and lower case letters as distinct. setChar acter sToBeSkipped: determines the set of
characters that will be skipped while scanning. The preset set of characters to skip are whitespace and newline
characters. setl ocale: specifies the locale to be used while scanning strings. setScanl ocation: setstheindex in
the string object at that scanning will commence. Using this method, you can repeatedly scan portions of a string.

Scanning is performed using any of the scan... methods listed under “ Scanning a String”.

Note that floating point numbers are assumed to be IEEE compliant.

Creating an NSScanner

+ (id)localizedScanner WithString: (NSString *)aString
Creates and returns a scanner that scans atring. Invokes
initWithString: and setsthelocale to the user’s default

locale.
+ (id)scanner WithString: (NSString *)aString Creates and returns a scanner that scans atring.
— (id)initWithString: (NSString *)aString Initializes the receiver, a newly allocated scanner, to scan

astring. Returns self.

Getting an NSScanner’s String

— (NSString *)string Returns the string object that the scanner was created with.

OpenStep Specification—10/19/94 Classes: NSScanner 2-117

Configuring an NSScanner

— (BOOL)caseSensitive Returns YES if the scanner distinguishes case, and NO
otherwise. Scanners are by default not case sensitive.

— (NSCharacterSet *)char acter sToBeSkipped Returns a character set object containing those characters
that the scanner ignores when looking for an element.
The default set is the whitespace and newline character
Set.

— (NSDictionary *)locale Returns a dictionary object containing locale information.
Returns nil if the locale dictionary has not been set.

— (unsigned)scanL ocation Returnsthe character index at which the scanner will begin
its next scanning operation.

— (void)setCaseSensitive: (BOOL)flag If flag is YES, the scanner considers case when scanning
characters. If flag isNO, it ignores case distinctions.
NSScanners are by default not case sensitive.

— (void)setChar acter sToBeSkipped: (NSCharacterSet *)aSet
Sets the scanner to ignore characters from aSet when
scanning its string.

— (void)setL ocale: (NSDictionary *)localeDictionary Sets the receiver’s dictionary object containing locale
information.

— (void)setScanL ocation: (unsigned int)anl ndex Sets the location at which the next scan will begin to
anindex.

Scanning a String

In the scan...methods listed here, the value arguments (which are values returned by reference) are optional. Pass
an argument value of nil if you do not wish areturn value.

— (BOOL)scanChar acter sFromSet: (NSCharacterSet *)aSet
intoString: (NSString **)value Scans the string as long as characters from aSet are
encountered, accumulating characters into an optional
string that’s returned by referencein value. If any
characters are scanned, returns Y ES; otherwise returns
NO.

— (BOOL)scanDouble: (double *)value Scansadoubleinto valueif possible. Returns YESif a
valid floating-point expression was scanned; NO
otherwise. HUGE_VAL or -HUGE_VAL isputin
value on overflow; 0.0 on underflow. Returns YESin
overflow and underflow cases

2-118 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (BOOL)scanFloat: (float *)value

— (BOOL)scanlnt:(int *)value

—(BOOL)scanL ongL ong:(long long *)value

— (BOOL)scanString: (NSString *)aString
intoString: (NSString **)value

Scans afloat into value if possible. Returns YES if avalid
floating-point expression was scanned; NO otherwise.
HUGE_VAL or -HUGE_VAL isputinvalue on
overflow; 0.0 on underflow. Returns YES in overflow
and underflow cases.

Scansanint into value if possible. Returns YES if avalid
integer expression was scanned; NO otherwise.
INT_MAX or INT_MIN is put in value on overflow.
Returns YES in overflow cases.

Scansalong long int into value if possible. Returns YES
if avalid integer expression was scanned; NO
otherwise. LONG_LONG_MAX or
LONG_LONG_MIN isput in value on overflow.
Returns YES in overflow cases.

Scans for astring, and if amatch is found returns by
reference in the optional value argument a string object
equal toit. If aString matches the characters at the scan
location, returns Y ES; otherwise returns NO.

— (BOOL)scanUpToChar acter sFromSet: (NSCharacterSet *)aSet

intoString: (NSString **)value

— (BOOL)scanUpToString: (NSString *)aString

intoString: (NSString **)value

— (BOOL)isAtENd

OpenStep Specification—10/19/94

Scansthe string until acharacter from aSet is encountered,
accumulating characters encountered into astring that’s
returned by referencein the optional value argument. If
any characters are scanned, returns Y ES; otherwise
returns NO.

Scans the string until aString is encountered,
accumulating characters encountered into astring that's
returned by referencein the optional value argument. If
any characters are scanned, returns Y ES; otherwise
returns NO.

Returns YES if the scanner has exhausted all charactersin
its string; NO if there are characters left to scan.

Classes. NSScanner 2-119

NSSerializer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSSerialization.h

Class Description

The NSSerializer class provides a mechanism for creating an abstract representation of aproperty list. (In
OpenStep, property lists are defined to be—and to contain—objects of these classes: NSDictionary, NSArray,
NSString, NSData). The NSSerializer class stores this representation in an NSData object in an
architecture-independent format, so that property lists can be used with distributed applications. NSSerializer's
companion class NSDeserializer declares methods that take the abstract representation and recreate the property
list in memory.

In contrast to archiving (see the NSArchiver class specification), the serialization process preserves only structural
information, not class information. Thus, if a property list is serialized and then deserialized, the objectsin the
resulting property list might not be of the same class as the objectsin the original property list. However, the
structure and interrel ationships of the datain the resulting property list areidentical to that in the original, with one
possible exception.

The exception isthat when an object graph is serialized, the mutability of the contai ners objects (NSDictionary and
NSArray objects) is preserved only down to the highest node in the graph that has an immutable container. Thus,
if an NSArray contains an NSMutableDictionary, the serialized version of this object graph would not preserve the
mutability of the dictionary or any of the mutable objectsit contained. Since serialization doesn’t preserve class
information or—in some cases—mutability, coding (asimplemented by NSCoder and NSArchiver) isthe preferred
way to make object graphs persistent.

The NSSerializer class object provides the interface to the serialization process; you don't create instances of
NSSerializer. You might subclass NSSerializer to modify the representation it creates, for example, to encrypt the
data or add authentication information.

Other types of data besides property lists can be serialized using methods declared by the NSData and
NSMutableData classes (see serializeDataAt: of Obj CType: context: and

deserializeDataAt: of Obj CType:atCur sor:context:), allowing these types to be represented in an
architecture-independent format. Furthermore, the NSObjCTypeSerializationCallBack protocol allows you to
seridlize and deserialize objects that aren’t property lists.

2-120 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Serialization of Property Lists

+ (NSData *)serializePropertyList:(id)aPropertyList
Creates a data object, serializes aPropertyList into it, and
returns the data object. aPropertyList must be akind of
NSData, NSString, NSArray, or NSDictionary.

+ (void)serializePropertyList:(id)aPropertyList Serializes the property list aPropertyList in the mutable
intoData: (NSMutableData *)mdata data object mdata. aPropertyList must be akind of
NSData, NSString, NSArray, or NSDictionary.

OpenStep Specification—10/19/94 Classes: NSerializer 2-121

NSSet

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSSet class declares the programmatic interface to an object that manages an immutable set of objects. NSSet
provides support for the mathematical concept of aset. A set, both in its mathematical sense and in the OpenStep
implementation of NSSet, is an unordered collection of distinct elements. OpenStep provides the NSMutableSet
class for sets whose contents may be altered, and also provides the NSCountedSet class for sets that can contain
multiple instances of the same element.

Use set objects as an alternative to array objects when the order of elementsis not important, but performancein
testing whether an object is contained in the set is a consideration—while arrays are ordered, testing for
membership is slower than with sets. For example, the NSSet method containsObject: operatesin O(1) timewhen
applied to a set, while containsObject: operatesin O(N) time when applied to an array.

Objectsin a set must respond to hash and isEqual: methods. See the NSObject protocol for details on hash and
isEqual:.

Generally, you instantiate an NSSet object by sending one of the set... methods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as arguments. The set method isa
“convenience” method to create an empty set. Newly created instances of NSSet created by invoking the set method
can be populated with objects using any of theinit... methods. initWithObjects:: isthe designated initializer for
the NSSet class. Objects added to the set are not copied; rather, each object receives aretain message beforeit’s
added to the set.

NSSet provides methods for querying the elements of the set. allObjectsreturns an array containing all objectsin
the set. anyObj ect returns some object in the set. count returnsthe number of objects currently inthe set. member:
returns the object in the set that is equal to a specified object. Additionally, the inter sectsSet: tests for set
intersection, isEqual ToSet: tests for set equality, and isSubset Of Set: tests for one set being a subset of the
specified set object.

The objectEnumerator method provides for traversing elements of the set one by one.

NSSet’s makeObj ectsPer form: and makeObj ectsPer for m:withObject: methods providesfor sending messages
to individual objectsin the set.

2-122 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Exceptions

NSSet implementsthe encodeWithCoder : method, which raises NSInternal | nconsi stencyException if the number
of objects enumerated for encoding turns out to be unequal to the number of objectsin the set.

Allocating and Initializing a Set
+ (id)allocWithZone: (NSZone *)zone
+ (id)set
+ (id)setWithArray:(NSArray *)array

+ (id)setWithObj ect: (id)anObject

+ (id)setWithObjects: (id)firstObj, ..

— (id)initWithArray:(NSArray *)array

— (id)initWithObjects: (id)firstObj,...

— (id)initWithObjects: (id *)objects
count: (unsigned int)count

— (id)initWithSet: (NSSet *)another Set

— (id)initWithSet: (NSSet *)set
copyltems:(BOOL)flag

OpenStep Specification—10/19/94

Creates and returns an uninitialized set object in zone.
Creates and returns an empty set object.

Creates and returns a set object containing the objectsin
array.

Creates and returns a set object containing the single
element anObject.

Createsand returnsaset object containing the objectsinthe
argument list. The object list is comma-separated and
ends with nil.

Initializes a newly allocated set object by placing in it the
objects contained in array.

Initializes a newly alocated set object by placing in it the
objectsin the argument list. The object listis
comma-separated and ends with nil.

Initializes a newly allocated set object by placing in
it count objects from the objects array.

Initializes a newly allocated set object by placing in it the
objects contained in another Set.

Initializes a newly alocated set object by placing in it the
objects contained in another Set (or immutabl e copies of
them, if flagis YES).

Classes: NSSet 2-123

Querying the Set
— (NSArray *)allObjects
— (id)anyObject
— (BOOL)containsObj ect: (id)anObject
— (unsigned int)count

— (id)member : (id)anObject

— (NSEnumerator *)objectEnumerator
Sending Messages to Elements of the Set

— (void)makeObjectsPer for m: (SEL)aSel ector

— (void)makeObj ectsPerform: (SEL)aSel ector

withObj ect: (id)anObject

Comparing Sets

— (BOOL)inter sectsSet: (NSSet *)other Set

— (BOOL)isEqual ToSet: (NSSet *)other Set

— (BOOL)isSubset Of Set: (NSSet *)other Set

Creating a String Description of the Set
— (NSString *)description

Returns an array containing all the objectsin the set.
Returns some object in the set, or nil if the set is empty.
Returns YES if anObject is present in the set.

Returns the number of objects currently in the set.

Return the object in the set that is equal to anObject, or nil
if noneisequal.

Returns an enumerator object that lets you access each
object in the set.

Sends an aSelector message to each object in the set.

Sends an aSelector message to each object in the
set, with anObject as an argument.

Returns Y ESif there’sany object in thereceiving set that's
equal to an object in other Set.

Returns YES if every object in the receiving set is equal to
an object in other Set, and the two sets contain the same
number of objects.

Returns YESif every object in the receiving set is equal to
an object in other Sat, and the receiving set contains no
more objects than other Set does.

Returns a string object that describes the contents of the
receiver.

— (NSString *)descriptionWithL ocale: (NSDictionary *)localeDictionary

2-124 Chapter 2: Foundation Kit

Returns a string representation of the NSSet object,
including the keys and values that represent the locale
data from localeDictionary.

OpenStep Specification—10/19/94

NSString

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSString.h

Foundation/NSPathUtilities.h
Foundation/NSUtilities.h

Class Description

NSString declares the programmatic interface for objects that create and manage immutable character stringsin a
representati on-independent format.

NSString (and NSMutableString) are abstract classes for string manipulation. NSString provides methods for
read-only access, while NSMutableString allows for changing the contents of the string. NSString and
NSMutableString provide factory methods that return autoreleased instances of unspecified subclasses of strings.

Whilethe actual representation of character strings stored in NSString and NSMutableString isindependent of any
particular implementation, you can in general think of the contents of NSString and NSMutableString objects as
being, canonically, Unicode characters (defined by the unichar datatype). Methodsthat use theterms*character”,
“range’, and “length”, refer to strings of unichars and ranges and lengths of unichar strings—thisisimportant,
because conversion between unichar s and other character encodings is not necessarily one-to-one. For instance,
an | SO Latinl encoded string of agiven length might contain fewer or more characterswhen encoded as unichars.
Another important point isthat unichar s don't necessarily correspond one-to-one with what is normally thought of
as“letters’ in astring; if you need to go through a string in terms of "letters’, use

rangeOfComposedChar acter SequenceAtindex:.

Methods that take “ CString” arguments deal with the default eight-bit encoding of the environment, which could
be, for instance, EUC or 1SOLatinl. You can also explicitly convert to and from any encoding by using methods
such asinitWithData:usingencoding: and dataUsingEncoding:.

Constant NSStrings can be created with the @"..." option—such strings should contain only ASCI| characters, and
nothing more.

Strings are provided with generic coding behavior when used for storage or distribution. This behavior isto copy
the contents and provide a generic NSString implementation, losing class but preserving mutability.

In general, you instantiate NSString objects sending one of the stringWith... methods or the
localizedStringWithFormat: method to the NSString class object. For NSString objects that were allocated
“manually”, use any of theinitWith... methods to initialize the contents of the string object.

The primitive methods to NSString are length and character Atlndex:.

OpenStep Specification—10/19/94 Classes: NString 2-125

UNIX-style file system path names can be manipulated using the collection of stringBy... methods described
under “Manipulating File System Paths’ below.

Creating Temporary Strings

+ (NSString *)localizedStringWithFor mat: (NSString *)format,...

Returns a string created by using format asa printf() style
format string, and the following arguments as values to
be substituted into the format string. The user’s default
locale is used for format information.

+ (NSString *)stringWithCString: (const char *)byteString
Returns a string containing the characters in byteString,
which must be null-terminated. byteString should
contain characters in the default C string encoding.

+ (NSString *)stringWithCString: (const char *)byteString
length: (unsigned int)length Returns a string containing characters from byteString.
byteString should contain characters in the default C
string encoding. length bytes are copied into the string,
regardless of whether anull byte existsin byteString.
Raises NSInvalidArgumentException if byteString is
NULL

+ (NSString *)stringWithChar acter s:(const unichar *)chars
length: (unsigned int)length Returns a string containing chars. length characters are
copied into the string, regardless of whether anull
character existsin chars.

+ (NSString *)stringWithContentsOfFile: (NSString *)path
Returnsastring containing the contents of thefile specified
by path. This method attempts to determine the
encoding for the file. The string is assumed to bein
Unicode encoding, but if the encoding isdetermined not
to be Unicode, the default C string encoding is used
instead.

+ (NSString *)stringWithFor mat: (NSString * format,...
Returns a string created by using format asa printf() style
format string, and the following arguments as values to
be substituted into the format string.

2-126 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Initializing Newly Allocated Strings

— (id)init

— (id)initWithCString: (const char *)byteString

— (id)initWithCString: (const char *)byteString
length: (unsigned int)length

— (id)initWithCStringNoCopy: (char *)byteString
length: (unsigned int)length
freeWwhenDone: (BOOL)flag

— (id)initWithChar acter s:(const unichar *)chars
length: (unsigned int)length

— (id)initWithChar acter sNoCopy: (unichar *)chars
length: (unsigned int)length
freeWwhenDone: (BOOL)flag

— (id)initWithContentsOfFile: (NSString *)path

OpenStep Specification—10/19/94

Initializes the receiver, anewly allocated NSString, to
contain no characters. Thisisthe only initialization
method that a subclass of NSString should invoke.

Initializes the receiver, anewly allocated NSString, by
converting the one-byte characters in byteString into
Unicode characters. byteString must be a
null-terminated C string in the default C string
encoding.

Initializes the receiver, anewly allocated NSString, by
converting length one-byte charactersin byteString into
Unicode characters. This method doesn’t stop at a null
byte.

Initializes the receiver, a newly allocated NSString, by
converting length one-byte charactersin byteString into
Unicode characters. This method doesn’t stop at a null
byte. The receiver becomes the owner of byteString; if
flagis YES it will free the memory when it no longer
needsit, but if flag isNO it won't.

Initializes the receiver, anewly allocated NSString, by
copying length characters from chars. This method
doesn’t stop at anull character.

Initializes the receiver, anewly allocated NSString, to
contain length characters from chars. This method
doesn’t stop at anull character. The receiver becomes
the owner of chars; if flag is Y ES the receiver will free
the memory when it no longer needs them, but if flagis
NO it won't. Note that the NO case could be dangerous
if used with memory that could be freed. The NO flag
should be used only when the provided backing storeis
permanent.

Initializes the receiver, a newly allocated NSString, by
reading charactersfrom the file whose nameis given by
path. This method attempts to determine the encoding
for thefile. The string is assumed to be in Unicode
encoding, but if the encoding is determined not to be
Unicode, the default C string encoding is used instead.
Also see writeToFile:atomically: in “ Storing the
String”.

Classes: NString 2-127

— (id)initWithData: (NSData *)data
encoding: (NSStringEncoding)encoding

— (id)initWithFor mat: (NSString *)format,...

— (id)initWithFor mat: (NSString *)format
arguments:(va list)argList

— (id)initWithFor mat: (NSString *)format
locale: (NSDictionary *)dictionary,...

— (id)initWithFor mat: (NSString *)for mat
locale: (NSDictionary *)dictionary
arguments:(va_list)argList

—(id)initWithString: (NSString *)string

Getting a String’s Length

— (unsigned int)length

Accessing Characters

— (unichar)character Atlndex: (unsigned int)index

— (void)getChar acter s: (unichar *)buffer

— (void)getChar acter s: (unichar *)buffer
range: (NSRange)aRange

2-128 Chapter 2: Foundation Kit

Initializes the receiver, anewly allocated NSString, by
converting the bytes in data into Unicode characters.
data must be an NSData object containing bytesin
encoding and in the default “plain text” format for that
encoding.

Initializes the receiver, anewly alocated NSString, by
constructing a string from format and following string
objects in the manner of printf().

Initializes the receiver, anewly allocated NSString, by
constructing a string from format and argList in the
manner of vprintf().

Initializes the receiver, anewly allocated NSString, by
constructing a string from format and the formatting
information in the dictionary in the manner of printf().

Initializes the receiver, anewly allocated NSString, by
constructing a string from format and format
information in dictionary and argList in the manner of
vprintf().

Initializes the receiver, anewly alocated NSString, by
copying the characters from string.

Returns the number of charactersin the receiver. This
number includestheindividua characters of composed
character sequences.

Returns the character at the array position given by index.
This method raises an NSStringBoundsError
exception if index lies beyond the end of the string.

Invokes getChar acter s:range: with the provided buffer
and the entire extent of the receiver asthe range.

Copies characters from aRange in the receiver into buffer,
which must be large enough to contain them. This
method does not add a null character. This method
raises an NSStringBoundsError exception if any part
of aRange lies beyond the end of the string.

OpenStep Specification—10/19/94

Combining Strings

— (NSString *)stringByAppendingFor mat: (NSString *)format,...
Returns a string made by using format as a printf() style
format string, and the following arguments as values to
be substituted into the format string.

— (NSString *)stringByAppendingString: (NSString *)aString
Returns a string made by appending atring and the
receiver.

Dividing Strings into Substrings

— (NSArray *)componentsSepar atedByString: (NSString *)separator
Finds the substringsin the receiver that are delimited by
Separator and returns them as the elements of an
NSArray. The stringsin the array appear in the order
they did in the receiver.

— (NSString *)substringFroml ndex: (unsigned int)index
Returns a string object containing the characters of the
receiver starting from the one at index to the end. This
method raises an NSStringBoundsError exception if
index lies beyond the end of the string.

— (NSString *)substringFromRange: (NSRange)aRange
Returns a string object containing the characters of the
receiver which liewithin aRange. Thismethod raisesan
NSStringBoundsError exception if any part of
aRange lies beyond the end of the string.

— (NSString *)substringTol ndex: (unsigned int)index
Returns a string object containing the characters of the
receiver up to, but not including, the one at index. This
method raises an NSStringBoundsError exception if
index lies beyond the end of the string.

Finding Ranges of Characters and Substrings

— (NSRange)rangeOfChar acter FromSet: (NSCharacterSet *)aSet
Invokes rangeOfChar acter FromSet: options. with no

options.
— (NSRange)rangeOfChar acter FromSet: (NSCharacterSet *)aSet
options: (unsigned int)mask Invokes rangeOfChar acter FromSet: options:range:
with mask and the entire extent of the receiver asthe
range.

OpenStep Specification—10/19/94 Classes: NString 2-129

— (NSRange)rangeOfChar acter FromSet: (NSCharacterSet *)aSet
options: (unsigned intymask Returns the range of the first character found from aSet.
range: (NSRange)aRange The search is restricted to aRange with mask options.
mask can be any combination (using the C bitwise OR
operator |) of NSCasel nsensitiveSearch,
NSLiteral Search, and NSBackwardsSearch.

— (NSRange)rangeOfString: (NSString *)string Invokes rangeOfString: options: with no options.

— (NSRange)rangeOfString: (NSString *)string Invokes rangeOfString: options.range: with mask
options: (unsigned int)mask optionsand the entire extent of the receiver astherange.

— (NSRange)rangeOfString: (NSString *)astring Returns the range giving the location and length in the
options: (unsigned intymask receiver of aSring. The search is restricted to aRange
range: (NSRange)aRange with mask options. mask can be any combination (using

the C bitwise OR operator |) of
NSCasel nsensitiveSearch, NSLiteral Search,
NSBackwardsSearch, and NSAnchoredSearch.

Determining Composed Character Sequences

— (NSRange)rangeOf ComposedChar acter SequenceAtl ndex: (unsigned int)anl ndex
Returns an NSRange giving the location and length in the
receiver of the composed character sequence located at
anlndex. Thismethod raisesan NSStringBoundsError
exception if anindex lies beyond the end of the string.

Identifying and Comparing Strings

— (NSComparisonResult)casel nsensitiveCompar e: (NSString *)aString
Invokes compar e:options; with the option
NSCasel nsensitiveSearch.

— (NSComparisonResult)compar e: (NSString *)aString
Invokes compar e:options. with no options.

— (NSComparisonResult)compar e: (NSString *)aString
options: (unsigned intymask Invokescompar e:options.range: with mask asthe options
and the receiver’s full extent as the range.

— (NSComparisonResult)compar e: (NSString *)aString
options: (unsigned int)mask Compares aString to the receiver and returns their lexical
range: (NSRange)aRange ordering. The comparison is restricted to aRange and
uses mask options, which may be
NSCasel nsensitiveSearch and NSLiteral Search.

— (BOOL)hasPrefix: (NSString *)aString Returns YES if aString matches the beginning characters
of the receiver, NO otherwise.

2-130 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (BOOL)hasSuffix: (NSString *)aString

— (unsigned int)hash

—(BOOL)isEqual:(id)anObject

—(BOOL)isequal ToString: (NSString *)aString

Storing the String
— (NSString *)description

— (BOOL)writeToFile:(NSString *)filename
atomically: (BOOL)useAuxiliaryFile

Getting a Shared Prefix

Returns YES if aString matches the ending characters of
the receiver, NO otherwise.

Returns an unsigned integer that can be used as atable
address in a hash table structure. If two string objects
areequal (asdetermined by theisEqual: method), they
must have the same hash value.

Returns YES if both the receiver and anObject have the
sameid or if they're both NSStrings that compare as
NSOrderedSame, NO otherwise.

Returns YESif aString is equivalent to the receiver (if they
have the sameid or if they compare as
NSOrderedSame), NO otherwise.

Returns the string itself.

Writes atextual description of the receiver to filename.
If useAuxiliaryFileis YES, the datais written to a
backup file and then, assuming no errors occur, the
backup file is renamed to the intended file name. The
string iswritten in the default C string encoding if the
contents can be converted to that encoding. If not, the
string is stored in the Unicode encoding.

— (NSString *)commonPr efixWithString: (NSString *)aString

options: (unsigned int)mask

Changing Case
— (NSString *)capitalizedString

— (NSString *)lower caseString

— (NSString *)upper caseString

OpenStep Specification—10/19/94

Returns the substring of the receiver containing characters
that the receiver and atring havein common. mask can
be any combination (using the C bitwise OR operator |)
of NSCasel nsensitiveSearch and NSLiteral Search.

Returns a string with the first character of each word
changed to its corresponding uppercase value.

Returns a string with each character changed to its
corresponding lowercase value.

Returns a string with each character changed to its
corresponding uppercase value.

Classes: NString 2-131

Getting C Strings

— (const char *)cString

— (unsigned int)cStringL ength

— (void)getCString: (char *)buffer

— (void)getCString: (char *)buffer
maxL ength: (unsigned int)maxLength

— (void)getCString: (char *)buffer
maxL ength: (unsigned intymaxLength
range: (NSRange)aRange
remainingRange: (NSRange *)leftover Range

Getting Numeric Values

— (double)doubleValue

2-132 Chapter 2: Foundation Kit

Returns a representation of the receiver asa C string in the
default C string encoding.

Returnsthelength in bytes of the C string representation of
the receiver.

Invokes
getCString:maxL ength:range:remainingRange:
with NSMaximumStringL ength as the maximum
length, the receiver’s entire extent as the range, and
NULL for the remaining range. buffer must be large
enough to contain the resulting C string plusa
terminating null character (which this method adds).

Invokes
getCString: maxL ength:range:remainingRange:
with maxLength as the maximum length, the receiver’s
entire extent asthe range, and NULL for the remaining
range. buffer must be large enough to contain the
resulting C string plus aterminating null character
(which this method adds).

Copiesthereceiver's characters (in the default C string
encoding) as bytes into buffer. buffer must be
large enough to contain maxLength bytes plus a
terminating null character (which this method adds).
Charactersare copied from aRange; if not all characters
can be copied, the range of those not copied is put into
leftoverRange. This method raises an
NSStringBoundsError exception if any part of
aRange lies beyond the end of the string.

Returns the double precision floating point value of the

receiver’ stext. Whitespace at the beginning of the string
is skipped. If the receiver begins with avalid text
representation of afloating-point number, that number’'s
valueis returned, otherwise 0.0 is returned.
HUGE_VAL or -HUGE_VAL isreturned on overflow.
0.0 isreturned on underflow. Characters following the
number are ignored.

OpenStep Specification—10/19/94

— (float)floatValue Returns the floating-point value of the receiver’s text.
Whitespace at the beginning of the string is skipped. If
the receiver begins with avalid text representation of a
floating-point number, that number’s value is returned,
otherwise 0.0 is returned. HUGE_VAL or
—HUGE_VAL isreturned on overflow. 0.0 is returned
on underflow. Characters following the number are
ignored.

— (int)intValue Returnstheinteger value of the receiver’stext. Whitespace
at the beginning of the string is skipped. If the receiver
begins with a valid representation of an integer, that
number’s value is returned, otherwise O is returned.
INT_MAX or INT_MIN isreturned on overflow.
Characters following the number are ignored.

Working With Encodings

+ (NSStringEncoding *)availableStringeEncodings Returns anull terminated array of available string
encodings..

+ (NSStringEncoding)default CStringEncoding Returns the C string encoding assumed for any method
accepting a C string as an argument.

+(NSString *)localizedNameOfStringEncoding: (N SStringEncoding)encoding
Returnsthelocalized name of the string encoding specified
by encoding.

— (BOOL)canBeConvertedToEncoding: (NSStringEncoding)encoding
Returns YES if the receiver can be converted to encoding
without loss of information, and NO otherwise.

— (NSDhata *)dataUsingEncoding: (NSStringEncoding)encoding
Invokes dataUsingEncoding: allowL ossyConversion:
with NO as the argument to allow lossy conversion.

— (NSData *)dataUsingEncoding: (NSStringEncoding)encoding
allowL ossyConversion: (BOOL)flag Returns an NSData object containing a representation of

the receiver in encoding. If flag is NO and the receiver
can't be converted without losing some information
(such as accents or case) this method returns nil. If flag
is YES and the receiver can’t be converted without
losing some information, some characters may be
removed or atered in conversion.

OpenStep Specification—10/19/94 Classes: NString 2-133

— (NSStringEncoding)fastestEncoding Encoding in which this string can be expressed (with
lossless conversion) most quickly.

— (NSStringEncoding)smallestEncoding Encoding in which this string can be expressed (with
lossless conversion) in the most space efficient manner

Converting String Contents into a Property List

— (id)propertyList Depending on the format of the receiver’s contents, returns
astring, data, array, or dictionary object represention of
those contents.

— (NSDictionary *)propertyListFromStringsFileFor mat
Returns a dictionary object initialized with the keys and
valuesfound in thereceiver. Thereceiver’sformat must
be that used for “.string” files.

Manipulating File System Paths
— (unsigned int)completePathl ntoString: (NSString **)outputName

caseSensitive: (BOOL)flag Regards the receiver as containing a partial filename and
matchesintoArray: (NSArray **)outputArray returnsin outputName the longest matching path name.
filter Types.(NSArray *)filter Types Caseisconsidered if flag is YES. If outputArray is

given, all matching filenames are return in outputArray.
If filter Typesis provided, this method considers only
those paths that match one of the types. Returns O if no
matches are found; otherwise, the return valueis
positive.

— (NSString *)lastPathComponent Returns the last component of the receiver’s path
representation. Given the path “/Images/Bloggs.tiff”,
this method returns a string containing “ Bloggs.tiff”.

— (NSString *)pathExtension Returnsthe extension of the receiver’s path representation.
Given the path “/Images/Bloggs.tiff”, this method
returns a string containing “tiff”.

— (NSString *)stringByAbbreviatingWithTildel nPath
Returns a string in which the user’s home directory path is
replace by “~".

— (NSString *)stringByAppendingPathComponent: (NSString *)aString
Returns a string representing the receiver’s path with the
addition of the path component aString.

— (NSString *)stringByAppendingPathExtension: (NSString *)aString
Returns a string representing the receiver’s path with the
addition of the extension atring.

2-134 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (NSString *)stringByDeletinglL astPathComponent
Returns the receiver’s path representation minus the last
component. Given the path “/Images/Bloggs.tiff”, this
method returns a string containing “/Images”.

— (NSString *)stringByDeletingPathExtension Returns the receiver’s path representation minus the
extension on the last component. Given the path
“/Images/Bloggs.tiff”, this method returns a string
containing “/Images/Bloggs’ .

— (NSString *)stringByExpandingTildel nPath Returnsastring in which atilde is expanded to itsfull path
equivalent.

— (NSString *)stringByResolvingSymlinksinPath Returns a string identical to the receiver’s path except that
any symbolic links have been resolved.

— (NSString *)stringByStandar dizingPath Returns a string containing a* standardized” path, onein
which tildes are expanded and redundant elements (for
example /") eliminated.

OpenStep Specification—10/19/94 Classes: NSString 2-135

NSThread

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSThread.h

Class Description

An NSThread object controls a thread of execution. You use an NSThread when you want to terminate or delay a
thread or you want a new thread.

A thread is an executable unit. A task is made up of one or more threads. Each thread hasits own execution stack
and is capable of independent 1/0. All threads share the virtual memory address space and communication rights
of their task. When athread is started, it is detached from itsinitiating thread. The new thread runs independently.
That is, the initiating thread does not know the new thread’s state.

To obtain an NSThread object that represents your current thread of execution, use the currentThread method. To
obtain an NSThread object that will create a new thread of execution, use

detachNewThreadSelector:toTarget: withObject:. This method sends the specified Objective C message to the
specified object inits own thread of execution. You use the NSThread object returned by these methodsif you ever
need to delay or terminate that thread of execution.

When you use detachNewThreadSelector :toTar get: withObject:, your application becomes multithreaded. At
any time, you can send isM ultiThreaded to find out if the application is multithreaded, that is, if athread was ever
detached from the current thread. isM ultiThreaded returns YES even if the detached thread has completed
execution.

Creating an NSThread

+ (NSThread *)currentThread Returns an object representing the current thread of
execution.

+ (void)detachNewThreadSelector : (SEL)aSelector Creates and starts anew NSThread for the message
toTarget:(id)aTarget [aTarget aSelector:anArgument]. The method
withObj ect: (id)anArgument aSelector may take only one argument and may not

have areturn value. If thisisthe first thread detached
from the current thread, this method posts the
notification NSBecomingMulti Threaded will the nil
object to the default notification center.

2-136 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Querying a Thread
+ (BOOL)isM ultiThreaded

— (NSMutableDictionary *)threadDictionary

Delaying a Thread
+ (void)sleepUntilDate: (NSDate *)date

Terminating a Thread

+ (void)exit

OpenStep Specification—10/19/94

Returns Y ESif athread was ever detached (regardless of if
the detached thread is till running).

Returns the NSThread's dictionary, allowing you to add
data specific to the receiving NSThread. This
essentially allows user-defined NSThread variables.

Has the receiving NSThread sleep until the time specified
by date. No input or timers will be processed in this
interval.

Terminates the thread represented by the calling object.
Before exiting that thread, this method posts the
NSThreadExiting notification with the thread being
exited to the default notification center.

Classes: NSThread 2-137

NSTimer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSTimer.h

Class Description

NSTimer createstimer objects. A timer object waitsuntil a certain timeinterval has elapsed and then fires, sending
a specified message to a specified object. For example, you could create an NSTimer that sends amessageto a
window, telling it to update itself, after acertain time interval.

NSTimer objects work in conjunction with NSRunL oop objects. NSRunL oops control loops that wait for input,
and they use NSTimersto help determine the maximum amount of time they should wait. When the NSTimer’s
time limit has elapsed, the NSRunL oop fires the NSTimer (causing its message to be sent), then checks for new
input.

There are several ways to create an NSTimer object. The scheduledTimer WithTimel nterval... class methods
automatically register the new NSTimer with the current NSRunL oop object in default mode. The
timerWithTimel nterval... class methods create NSTimersthat the user may register at alater time by sending the
message addTimer :for M ode: to the NSRunL oop. If you specify that the NSTimer should repeat, it will
automatically reschedule itself after it fires. If adelay occurs when atimer is scheduled to fire, the timer will not
fire. For example, suppose you used the following statement to create atimer:

timer = [NSTimer scheduledTimerWithTimeInterval:0.5 invocation:anInvocation repeats:YES];

This statement creates atimer will schedule itself to fire after 0.5 seconds, 1 second, 1.5 seconds, and so on from
the time this statement is executed. Suppose there was a 2 second delay because NSRunL oop was busy processing
input. Thetimer takesthisdelay into consideration and will skip interval sthat were already missed when computing
the next scheduled fire date.

There is no method that removes the association of an NSTimer from an NSRunL oop—send the NSTimer the
invalidate message instead. invalidate disables the NSTimer, so it will no longer affect the NSRunL oop.

See the NSRunL oop class description for more information on NSRunL oops.

As a consequence of being a subclass of NSObject, NSTimer conforms to the NSCoding protocol. In practice,
however, NSTimers are not encoded nor archived.

2-138 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Creating a Timer Object

+ (NSTimer *)scheduledTimer WithTimel nterval: (NSTimel nterval)seconds
invocation: (NSlnvocation *)anlnvocation Returns a new NSTimer object and registersit with the
repeats: (BOOL)repeats current NSRunL oop in the default mode. After seconds
seconds have elapsed, the NSTimer fires, sending
anlnvocation’s message to itstarget. If repeatsis YES,
the NSTimer will repeatedly reschedule itself.

+ (NSTimer *)scheduledTimer WithTimel nterval: (NSTimel nterval)seconds

target: (id)anObject Returns anew NSTimer object and registers it with the
selector: (SEL)aSelector current NSRunL oop in the default mode. After seconds
user I nfo: (id)anArgument seconds have elapsed, the NSTimer fires, sending the
repeats. (BOOL)repeats message [anObj ect aSelector:self]. If anObject needs

more information, it can send the NSTimer auser Data
message to retrieve anArgument. If repeatsis YES, the
NSTimer will repeatedly reschedule itself.

+ (NSTimer *)timer WithTimel nterval: (NSTimel nterval)seconds
invocation: (NSlnvocation *)anlnvocation Returns anew NSTimer that, if registered, will fire after
repeats. (BOOL)repeats seconds seconds. Upon firing, the NSTimer sends
anlnvocation’s message to itstarget. If repeatsis YES,
the NSTimer will repeatedly reschedule itself.

+ (NSTimer *)timer WithTimel nterval: (NSTimelnterval)seconds

target: (id)anObject Returns a new NSTimer that, if registered, will fire after
selector: (SEL)aSe ector seconds seconds. Upon firing, the NSTimer sends the
user I nfo: (id)anArgument message [anObj ect aSelector:self]. If anObject needs
repeats: (BOOL)repeats moreinformation, it can send the NSTimer auser Data

message to retrieve anArgument. If repeatsis YES, the
NSTimer will repeatedly reschedule itself.
Firing the Timer
— (void)fire Causes the NSTimer’s message to be dispatched to its
target.
Stopping the Timer

— (void)invalidate Stops the NSTimer from ever firing again.

Getting Information About the NST imer
— (NSDate *)fireDate Returns the date that the NSTimer will next fire.

—userinfo Additional datathat the object receiving NSTimer's
message can Use.

OpenStep Specification—10/19/94 Classes: NSTimer 2-139

NSTimeZone

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSTimeZoneis an abstract class that defines the behavior of time-zone objects. By itself, NSDate represents dates
as universal time. Universal time treats a date and time value asidentical in, for instance, Redwood City and New
York City. NSDate has no provision for local e adjustment of time-zone information. Provision for localeiscritical
for string descriptions and other expressions of conventional dates and times. NSTimeZone is used to affect the
apparent value of date objects so that they reflect time zone related locale information.

NSTimeZoneDetail, a public subclass of NSTimeZone, augments the behavior of NSTimeZone by providing the
commonly known attributes of atime zonein effect for adate within atime zone geopolitical area. These attributes
are abbreviation, the offset from GMT (universal time), and an indication of whether Daylight Savings Timeisin
effect.

Time-zone objects represent geopolitical regions and use names to dencte the various regions. For example,
“US/Pacific” identifies the geopoalitical time zone for San Francisco and Los Angeles, which falsin the same
general latitude as that for the time zone “ Canada/Pacific.” The US/Pacific time-zone has specific
NSTimeZoneDetail instances that specify PST (Pacific Standard Time) and PDT (Pacific Daylight Time), which
have dlightly different offsets from GMT.

You typically associate the objects returned by NSTimeZone (and, by extension, NSTimeZoneDetail) with date
objects to affect their behavior. Time-zone objects can be of various types:

 time zones with hour and minute offsets from Greenwich Mean Time (GMT)
* time zones with a single abbreviation and offset
 time zonesthat vary according to Standard Time and Daylight Savings Time

The system should supply the various choices for time zones along with time-zone information. These choices
should be restricted to subsets based on latitude. You can access these choices through the timeZoneArray class
method. Another restriction is the choice of time zone available when there is an ambiguous abbreviation; these
choices are available through the class method abbr eviationDictionary. Despite these restrictions, you can obtain
an NSTimeZone object from an arbitrary file through the class method timeZoneWithName.

Note: By itself, the NSTimeZone class only names atime zone. It does not associate an abbreviation or atemporal
offset with atime zone; that is done by NSTimeZoneDetail. An instance of NSTimeZone, however, “knows’ about
the set of time-zone detail objects related to it.

2-140 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSTimeZone provides several class methods to get time-zone objects, with or without detail:
timeZoneWithName:, timeZoneWithAbbreviation:, and timeZoneFor SecondsFromGMT:. The class also
permits you to set the default time zone used by your application for your locale (setDefaultTimeZone:) You can
access this default time zone at any time by the default TimeZ one method, and, with the local TimeZone class
method, you can also get arelative time-zone object that will decode itself to become the default time zone for any
localein which it finds itself.

NSCalendarDate methods return date objects that are automatically bound with time-zone detail objects. These
date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you specify
otherwise, objectsreturned from NSCal endarDate are bound to the default time zone for the current locale. A useful
instance method is timeZoneDetail For Date:, which returns a time-zone detail object associated with a specific
date.

Creating and Initializing an NSTimeZone
+ (NSTimeZoneDetail *)defaultTimeZone Returns the default time zone as set for the current locale.

+ (NSTimeZone *)local TimeZone Returnsan NSTimeZonethat behaves asthe current default
time zonein any given locale.

+ (NSTimeZone *)timeZoneFor SecondsFromGM T: (int)seconds
Returns an NSTimeZone representing the time zone with
seconds offset from Greenwich Mean Time. If thereis
no object matching the offset, this method creates
and returns a new NSTimeZone bearing the value
seconds as a name.

+ (NSTimeZoneDetail *)timeZoneWithAbbreviation: (NSString *)abbreviation
Returns the time-zone object identified by the abbreviation
abbreviation. If there’s no match, this method returns
nil.

+ (NSTimeZone *)timeZoneWithName: (NSString *)aTimeZoneName
Returns the time-zone object with the name that
corresponds to the geopolitical region
aTimeZoneName. It searches the regions dictionary for
matching names. If there is no match on the name, this
method returns nil.

— (NSTimeZoneDetail *)timeZoneDetail For Date: (NSDate *)date
Returnsthe correct time-zone detail object associated with
adate object. You invoke this method when aregion’s
time zone (that is, its offset value from GMT) varies
over the year, as happens between Standard Time and
Daylight Savings Time.

OpenStep Specification—10/19/94 Classes: NSTimeZone 2-141

Managing Time Zones

+ (void)setDefault TimeZone: (NSTimeZone *)aTimeZone
SetsaTimeZone asthetime zone appropriate for the current
locale. Thisnew time zonereplacesthe previous default
time zone.

Getting Time Zone Information

+ (NSDictionary *)abbreviationDictionary Returns a dictionary that maps abbreviations to region
names, for example “PST” isthe key for “US/Pacific’.
If you know aregion name for akey, you can obtain a
valid abbreviation from the dictionary and use it to
obtain a detail time-zone object using
timeZoneWithAbbreviation:.

— (NSString *)timeZoneName Returns the geopolitical name of the time zone.

Getting Arrays of Time Zones

+ (NSArray *)timeZoneArray Returns an array of string object arrays, each containing
strings that show current geopolitical names for each
time zone. The subarrays are grouped by latitudinal
region.

— (NSArray *)timeZoneDetailArray Returns an array of NSTimeZoneDetail objects that are
associated with the receiving NSTimeZone object.

2-142 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSTimeZoneDetalil

Inherits From: NSTimeZone : NSObject

Conforms To: NSCoding, NSCopying (NSTimeZone)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSTimeZoneDetail isan abstract class that refinesthe behavior provided by NSTimeZone. NSTimeZoneidentifies
ageopolitical areawith a name (such as US/Pacific). NSTimeZoneDetail augments this region name with more
specific information appropriate for a particular date within its geopolitical region: an abbreviation, an offset (in
seconds) from Greenwich Mean Time (GMT), and an indication of whether Daylight Savings Timeisin effect. The
specificity afforded through NSTimeZoneDetail helps to resolve conflicts between abbreviations and offsets that
can arise within regions.

Even though it is a concrete subclass of NSTimeZone, NSTimeZoneDetail does not have “factory” class methods
that create and return time-zone objects. See the specification of NSTimeZone for methods that provide this ability.

However, NSTimeZoneDetail does have methods that allow you to get the abbreviation and temporal offset of a
time-zone object, as well as determine whether Daylight Savings Timeisin effect.

Querying an NSTimeZoneDetail

— (BOOL)isDaylightSavingTimeZone Returns YES if the time-zone detail object is used in the
representation of dates during Daylight Savings Time
and returns NO otherwise.

— (NSString *)timeZoneAbbreviation Returns the abbreviation of the time-zone detail object,
such as EDT (Eastern Daylight Time).

— (int)timeZoneSecondsFromGM T Returns the difference in seconds between the receiving
time-zonedetail object and GreenwichMean Time. The
offset can be a positive or negative value.

OpenStep Specification—10/19/94 Classes: NSTimeZoneDetail 2-143

NSUnarchiver

Inherits From: NSCoder : NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSArchiver.h

Class Description

NSUnarchiver, a concrete subclass of NSCoder, defines objects that can decode a data structure, such as agraph of
Objective C objects, from an archive. Such archives are produced by objects of the NSArchiver class. Seethe
NSATrchiver specification for an introduction to archiving.

General Exception Conditions

While unarchiving, NSUnarchiver performs avariety of consistency checks on the incoming data stream.
NSUnarchiver raises an NSlnconsistentArchiveException for a variety of reasons. Possible data errors leading to
this exception are: unknown type descriptors in the data file; an array type descriptor isincorrectly terminated
(missing]); excess charactersin atype descriptor; anull classfound where aconcrete class was expected; class not
loaded.

Initializing an NSUnarchiver

— (id)initFor ReadingWithData: (NSData *)data Initializes an NSUnarchiver object from data object data.
Raises NSl nvalidArgumentException if the data
argument is nil.

Decoding Objects
+ (id)unarchiveObjectWithData:(NSData*)data Decodes an archived object stored in data.
+ (id)unarchiveObjectWithFile:(NSString *)path ~ Decodes an archived object stored in the file path.

— (void)decodeAr rayOfObj CType: (const char *)itemType
count: (unsigned int)count Decodes an array of count data elements of the same
at:(void *)array Objective C dataitemType. It is your responsibility to
release any objects derived in this way.

Managing an NSUnarchiver

—(BOOL)isAtENnd Returns YES if the end of datais reached, NO if more data
(
follows.

2-144 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (NSZone *)objectZone Returns the allocation zone for the unarchiver object.

— (void)setObj ectZone: (NSZone *)zone Setstheall ocation zonefor the unarchiver object to zone. If
zoneisnil, it setsit to the default zone.

— (unsigned int)systemVer sion Returnsthe system version number for the unarchived data.

Substituting One Class for Another

+ (NSString *)classNameDecodedFor Ar chiveClassName: (NSString *)namel nArchive
Returns the class name used to archive instances of the
class (namelnArchive). This may not be the original
class name but another name encoded with
NSArchiver's encodeClassName:intoClassName.

+ (void)decodeClassName: (NSString *)namel nArchive
asClassName: (NSString *)trueName Decodes from the archived data a class name
(namel nArchive) substituted for the real class name
(trueName). This method enables easy conversion of
unarchived data when there are name changesin
classes.

— (NSString *)classNameDecodedFor Ar chiveClassName: (NSString *)namel nArchive
Returns the class name used to archive instances of the
class (namel nArchive). This may not be the original
class nhame but another name encoded with
NSArchiver's encodeClassName:intoClassName.

— (void)decodeClassName: (NSString *)namel nArchive
asClassName: (NSString *)trueName Decodes from the archived data a class name
(namelnArchive) substituted for the real class name
(trueName). This method enables easy conversion of
unarchived data when there are name changesin
classes.

OpenStep Specification—10/19/94 Classes: NSUnarchiver 2-145

NSUserDefaults

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSUserDefaults.h

Class Description
The NSUserDefaults class allows an application to query and manipulate a user’s defaults settings.

Defaults are grouped in domains. For example, there’'s adomain for application-specific defaults and another for
global defaults. Each domain has aname and stores defaults askey-value pairsin an NSDictionary object. A default
isidentified by astring key, and its value can be any property-list object (NSData, NSString, NSArray, or
NSDictionary). The standard domains are:

Domain Identifier

Argument NSArgumentDomain

Application Identified by the application’s name
Globa NSGlobalDomain

Languages | dentified by the language names
Registration NSRegistrationDomain

Theidentifiers starting with “NS” above are global constants.

The argument domain is composed of defaults parsed from the application’s arguments. The application domain
contains the defaults set by the application. It’'s identified by the name of the application, as returned by this

message!

NSString *applicationName = [[NSProcessInfo processInfo] processName] ;

The global domain contains defaults that are meant to be seen by all applications. The registration domain is a set
of temporary defaults whose values can be set by the application to ensure that searches for default values will
always be successful. Applications can create additional domains as needed.

A search for the value of a given default proceeds through the domains listed in an NSUserDefault object’s search
list. Only domainsin the search list are searched. The standard search list contains the domains from the table
above, in the order listed. A search ends when the default is found. Thus, if multiple domains contain the same
default, only the domain nearest the beginning of the search list provides the default’s value. Using the searchL ist
method, you can reorder the default search list or set up one that is a subset of all the user’s domains.

Typicaly, you usethisclass by invoking the standar dUser Defaults class method to get an NSUserDefaults object.
This method returns a global NSUserDefaults object with a search list already initialized. Then use the
setObject:forKey: and objectFor Key: methods to set and access user defaults.

2-146 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Therest of the methods allow more complex defaults management. You can create your own domains, modify any
domain, set up a custom search list, and even control the synchronization of the in-memory and on-disk defaults
representations. The synchronize method saves any modifications to the persistent domains and updates al
persistent domains that were not modified to what is on disk. synchronize is automatically invoked at periodic

intervals.

You can create either persistent or volatile domains. Persistent domains are permanent and last past the life of the
NSUserDefaults object. Any changes to the persistent domains are committed to disk. Volatile domains last only
last as long as the NSUserDefaults abject exists. The NSGlobalDomain domain is persistent; the

NSArgumentDomain is volatile.
Warnings.

* User defaults are not thread safe.

» Automatic saving of changesto disk (through synchronize) depends on arun-loop being present.

* You should synchronize any domain you have altered before exiting a process.

Getting the Shared Instance

+ (NSUserDefaults *)standar dUser Defaults

Getting and Setting a Default

— (NSArray *)arrayForKey: (NSString *)defaultName
InvokesobjectFor K ey: with key defaultName. Returnsthe

OpenStep Specification—10/19/94

Returnsthe shared defaults object. If it doesn’t exist yet, it's

created with a search list containing the names of the
following domains, in order: the NSArgumentDomain
(consisting of defaults parsed from the application’s
arguments), adomain with the process' name, separate
domains for each of the user’s preferred languages, the
NSGloba Domain (consisting of defaults meant to be
seen by all applications), and the
NSRegistrationDomain (a set of temporary defaults
whose values can be set by the application to ensure that
searches will always be successful). The defaults are
initialized for the current user. Subsequent
modificationsto the standard search list remain in effect
even when thismethod isinvoked again—the search list
is guaranteed to be standard only the first time this
method isinvoked. The shared instanceisprovided asa
convenience; other instances may also be created.

corresponding valueif it's an NSArray object
(according to the isKindOfClass: test) and nil
otherwise.

Classes: NSUserDefaults 2-147

— (BOOL)boolFor K ey: (NSString *)defaultName

— (NSData *)dataFor K ey: (NSString *)defaultName

Invokes stringFor Key: with key defaultName. Returns
YESif the corresponding value is an NSString
containing uppercase or lowercase “YES” or responds
to the intValue message by returning a non-zero value.
Otherwise, returns NO.

Invokes obj ectFor K ey: with key defaultName. Returnsthe
corresponding valueif it’'san NSData object (according
to the isKindOfClass: test) and nil otherwise.

— (NSDictionary *)dictionaryFor Key:(NSString *)defaultName

— (float)floatFor Key: (NSString *)defaultName

— (int)integer For Key: (NSString *)defaultName

— (id)objectFor Key: (NSString *)defaultName

Invokes obj ectFor K ey: with key defaultName. Returnsthe
corresponding value if it's an NSDictionary object
(according to the isKindOfClass: test) and nil
otherwise.

InvokesstringFor Key: with key defaultName. ReturnsO if
no string is returned. Otherwise, the resulting string is
sent a floatVValue message, which provides this
method’s return value.

InvokesstringFor K ey: with key defaultName. ReturnsQif
no string is returned. Otherwise, the resulting string is
sent aintValue message, which provides this method’s
return value.

Returns the value of the first occurrence of the specified
default, searching the domains included in the search
list. Returns nil if the default isn’t found.

— (void)removeObjectFor K ey: (NSString *)defaultName

— (void)setBool: (BOOL)value
forKey:(NSString *)defaultName

— (void)setFloat: (float)value
forKey:(NSString *)defaultName

— (void)setl nteger : (int)value
for Key: (NSString *)defaultName

2-148 Chapter 2: Foundation Kit

Removes the value for the given default in the standard
application domain. Removing a default has no effect
on the value returned by the objectFor Key: method if
the same key exists in adomain that precedes the
standard application domain in the search list.

Sets the value of the specified default to a string
representation of YES or NO, depending on value.
Invokes setObject:forKey: as part of its
implementation.

Sets the value of the specified default to astring
representation of value. Invokes setObject:forKey: as
part of itsimplementation.

Sets the value of the specified default to a string
representation of value. Invokes setObject:forKey: as
part of itsimplementation.

OpenStep Specification—10/19/94

— (void)setObject: (id)value Sets the value of the specified default in the standard
for Key: (NSString *)defaultName application domain. Setting a default has no effect on
the value returned by the objectFor Key: method if the
same key existsin adomain that precedes the
application domain in the search list.

— (NSArray *)stringArrayFor Key: (NSString *)defaultName
Invokes obj ectFor K ey: with key defaultName. Returnsthe
corresponding value if it's an NSArray object
containing NSStrings, and nil otherwise. The class of
each object is determined using the isKindOfClass:
test.

— (NSString *)stringFor K ey: (NSString *)defaultName
Invokes obj ectFor K ey: with key defaultName. Returnsthe
corresponding value if it's an NSString object
(according to the isKindOfClass: test) and nil
otherwise.

Initializing the User Defaults

— (id)init Initializes defaults for the current user (who'sidentified by
examining the environment). This method doesn’t put
anything in the search list. Invoke it only if you've
allocated your own NSUserDefaults object instead of
using the shared one. Returns self.

— (id)initWithUser : (NSString *)user Name Likeinit, but initializes defaults for the specified user.

Returning the Search List

— (NSMutableArray *)searchList Returns amutable array of domain names, signifying the
domains that objectFor Key: will search. You can
customize the search list by modifying the array that’'s
returned. Non-existent domain namesin thelist are
ignored.

Maintaining Persistent Domains

— (NSDictionary *)per sistentDomainFor Name: (NSString *)domainName
Returns a dictionary corresponding to the specified
persistent domain. The keysin the dictionary are names
of defaults, and the value corresponding to each key is
aproperty list data object.

OpenStep Specification—10/19/94 Classes: NSUserDefaults 2-149

— (NSArray *)persistentDomainNames Returns an array containing the names of the persistent
domains. Each domain can then be retrieved by
invoking per sistentDomainFor Name:.

— (void)removePer sistentDomainFor Name: (NSString *)domainName
Removes the named persistent domain from the user’s
defaults. The first time that a persistent domainis
changed after synchronize, an
NSUserDefaultsChanged notification is posted.

— (void)setPer sistentDomain: (NSDictionary *)domain
for Name: (NSString *)domainName Setsthe dictionary for the persistent domain named
domainName; raises an NSInvalidArgumentException
if avolatile domain with domainName already exists.
Thefirst time that a persistent domain is changed after
synchronize, an NSUserDefaultsChanged notification
is posted.

—(BOOL)synchronize Saves any modifications to the persistent domains and
updatesall persistent domainsthat were not modified to
what ison disk. Returns NO if it could not save datato
disk. Since the synchronize method is automatically
invoked at periodic intervals, use this method only if
you cannot wait for the automatic synchronization (for
exampleif your application is about to exit), or if you
want to update user defaults to what is on disk even
though you have not made any changes.

Maintaining Volatile Domains

— (void)removeVolatileDomainFor Name: (NSString *)domainName
Removes the named volatile domain from the user’'s
defaults.

— (void)setVolatileDomain:(NSDictionary *)domain
for Name: (NSString *)domainName Sets the dictionary to domain for the volatile domain
named domainName. This method raises an
NSInvalidArgumentException if a persistent domain
with domainName already exists.

— (NSDictionary *)volatileDomainFor Name: (NSString *)domainName
Returnsadictionary corresponding to the specified volatile
domain. The keysin the dictionary are names of
defaults, and the value corresponding to each key isa
property list data object.

2-150 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

— (NSArray *)volatileDomainNames Returns an array containing the names of the volatile
domains. Each domain can then be retrieved by calling
volatileDomainForName:.

Making Advanced Use of Defaults

— (NSDictionary *)dictionaryRepresentation Returns adictionary that contains a union of all key-value
pairsin the domainsin the search list. Aswith
objectForKey:, key-value pairsin domains that are
earlier inthe search list take precedence. The combined
result doesn’t preserveinformation about which domain
each entry came from.

— (void)register Defaults: (NSDictionary *)dictionary
Adds the contents of dictionary to the registration domain.
If there is no registration domain yet, it’s created using
dictionary, and NSRegistrationDomain is added to the
end of the search list.

OpenStep Specification—10/19/94 Classes: NSUserDefaults 2-151

NSValue

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSValue.h
Foundation/NSGeometry.h

Class Description

NSValue objects provide an object-oriented wrapper for the data types defined in standard C and Objective C. The
NSValue classis often used to put Objective C and standard C data typesinto collections that require objects, such
as NSArray objects. When avalue object isinstantiated, it is encoded with the specified data type.

The NSValue class declaresthe programmatic interface to an object that containsa C datatype. It provides methods
for creating value objects that contain values of a specified data type, pointers, and other objects.

Use NSValue objects to put C typesinto collections. Use NSNumber objects to put numbersinto collections.

Thefollowing code puts an NSRange into an NSArray, using the Objective C @encode directive to get a character
string that encodes the type structure of NSRange:

[myArray insertObject: [NSValue value:&range withObjCType:@encode (NSRange)] atIndex:n]
To get the value back, you would do this:
[[myArray objectAtIndex:n] getValue:&range]

NSValue objects are provided with generic coding and copying behavior. To subclass NSValue and preserve class
when encoding or copying, override classFor Coder, initWithCoder :, encodeWithCoder: (for encoding), and
copyWithZone: (for copying).

General Exception Conditions

NSValue can raise NSl nternal | nconsistencyException in a variety of cases where an unkown Objective C typeis
found. In addition, NSValue's implementation of encodeWithCoder: can raise NSInvalidArgumentException if
an attempt is made to encode void.

2-152 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Allocating and Initializing Value Objects

+ (NSValue *)value: (const void *)value Creates and returns a value object containing the value
withObj CType: (const char *)type value of the Objective C type type.

+ (NSVaue *)valueWithNonretainedObj ect: (id)anObject
Creates and returns a value object containing the object
anObject, without retaining anObject. Thisis
provided as a convenience method: the statement
[NSValue valueWithNonretainedOject:anObject] is
equivalent to the statement [NSVal ue value: & anObject
withObj CType: @encode(void *)].

+ (NSvaue *)valueWithPointer: (const void *)pointer
Creates and returns a value object that contains the
specified pointer. Thisis provided as a convenience
method: the statement [NSvalue
valueWithPointer:pointer] isequival ent to the statement
[NSValue value:& pointer
withObj CType: @encode(void *)].

Allocating and Initializing Geometry V alue Objects

+ (NSVaue *)valueWithPoint: (N SPoint) point Creates and returns a value object that contains the
specified NSPoint structure (which represents a
geometrical point in two dimensions).

+ (NSVvaue *)valueWithRect: (NSRect)rect Creates and returns a value object that contains the
specified NSRect structure, representing a rectangle.

+ (NSValue *)valueWithSize: (NSSize)size Creates and returns a value object that contains the
specified NSSize structure (which stores awidth and a
height).

Accessing Data in Value Objects
— (void)getValue: (void *)value Copiesthe receiver’'s datainto value.

— (id)nonretainedObj ectValue Returns the non-retained object that’s contained in the
receiver. It's an error to send this message to an
NSValue object that doesn’t store a nonretained object.

— (const char *)objCType Returns the Objective C type of the data contained in the
receiver.
—(void *)pointerValue Returns the value pointed to by a pointer contained in an

value object. It's an error to send this message to an
NSValue that doesn’t store a pointer.

OpenStep Specification—10/19/94 Classes: NSvalue 2-153

Accessing Data in Value Geometry Objects

— (NSPoint)pointValue Returns the point structure that’s contained in the receiver.

— (NSRect)rectValue Returns the rectangle structure that's contained in the
receiver.

— (NSSize)sizeValue Returns the size structure that’s contained in the receiver.

2-154 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Protocols

NSCoding
Adopted By: NSObject
Declared In: Foundation/NSObject.h

Protocol Description

The NSCoding protocol declares the two methods that a class must implement so that objects of that class can be
encoded and decoded. This capability providesthe basisfor archiving (where objects and other structures are stored
on disk) and distribution (where objects are copied to different address spaces).

When an object receives an encodeWithCoder: message, it should write its instance variables (and, through a
messageto super, theinstance variablesthat it inherits) to the supplied NSCoder. Similarly, when an object receives
an initWithCoder: message, it should initialize its instance variables (and inherited instance variables, again
through a message to super) from the data in the supplied NSCoder. See the NSCoder and NSArchiver class
specifications for more complete information.

Encoding and Decoding Objects

— (void)encodeWithCoder : (NSCoder *)aCoder Encodes the receiver using aCoder.
—(id)initWithCoder : (NSCoder *)aDecoder Initializes and returns a new instance from datain
aDecoder.

OpenStep Specification—10/19/94 Protocols: NSCoding 2-155

NSCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

A class whose instances provide functional copies of themselves should adopt the NSCopying protocol. The exact
meaning of “copy” can vary from classto class, but a copy must be afunctionally independent object, identical to
the original at the time the copy was made. Where the concept “immutable vs. mutable” applies to an object, this
protocol produces immutable copies; see the NSMutableCopying protocol for details on making mutable copies.
Property list classes (NSString, NSData, NSArray, and NSDictionary) guarantee immutable returned values.

In most cases, to produce a copy that’s independent of the original, a deep copy must be made. A deep copy isone
in which every instance variable of the receiver is duplicated, instead of referencing the variable in the original
object. If the receiver’s instance variables themsel ves have instance variables, those too must be duplicated, and so
on. A deep copy isthus a completely separate object from the original; changesto it don't affect the original, and
changesto the original don't affect it. Further, for an immutable copy, no part at any level may be changed, making
acopy a“snapshot” of the original object.

Making a complete deep copy isn't ways needed. Some objects can reasonably share instance variables among
themselves—a static string object that gets replaced but not modified, for example. In such cases your class can
implement NSCopying more cheaply than it might otherwise need to.

The typical usage of NSCopying isto create “passing by value’ value objects.

Contrary to most methods, the returned object is owned by the caller, who is responsible for releasing it.

Copying Objects

— (id)copyWithZone: (NSZone *)zone Returns a new instance that’s a functional copy of the
receiver. Memory for the new instanceisallocated from
zone. For collections, creates a deep (recursive) copy.
The copy returned isimmutable if the consideration
“immutable vs. mutable” applies to the receiving
object; otherwise the exact nature of the copy is
determined by the class. The returned object is owned
by the caller, who isresponsible for releasing it.

2-156 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSLocking

Adopted By: NSConditionLock
NSLock
NSRecursivel ock

Declared In: Foundation/NSLock.h

Protocol Description

Thisprotocol isused by classesthat providelock abjects. Thelock objects provided by OpenStep are used only for
protecting critical sections of code: sections that manipulate shared data and that can be executed simultaneously
in several threads. Lock objects—except for NSConditionL ock objects—contain no useful data.

Although an object that isn't alock could adopt the NSLocking protocol, it may be more desirable to design the
object so that al locking is handled internally, through normal use rather than requiring that the object be explicitly
locked and unlocked.

In order to enable clients to only have locks when processes become multithreaded, it is permissible to unlock a
lock freshly created (i.e. that has not been locked)—unlessit is arecursive lock.

Three classes conform to the NSL ocking protocol:

Class Usage
NSL ock Protect critical sections of code.
NSConditionL ock Protects critical sections of code, but can also be used to postpone entry to a

critical section until aconditionismet. This classisfunctionally a superset of
the NSLock class, though unlocking is slightly more expensive.

NSRecursivel ock Protects critical sections from access by multiple threads, but allows asingle
thread to acquire alock several times without deadlocking.

None of these classes busy-waits while the lock is unavailable. All classes may all be efficiently used for long
sections of atomic code. See the class specifications for these classes for further information on their behavior and
usage.

Locking Operations

— (void)lock Acquires alock. Applications generally do this when
entering a critical section of their code. A thread will
sleep if it can't immediately acquire the lock.

— (void)unlock Releases alock. Applications generally do this when
exiting a critical section of their code.

OpenStep Specification—10/19/94 Protocols: NSLocking 2-157

NSMutableCopying

Adopted By: various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

A class that defines an “immutable vs. mutable” distinction adopts this protocol to allow mutable copies of its
instances to be made. A mutable copy of an object is usually a shallow copy (as opposed to the deep copy defined
inthe NSCopying protocol specification). The original and its copy share referencesto the sameinstance variables,
so that if a component of the copy is changed, for example, that change is reflected in the original.

A classthat doesn’t define an “immutable vs. mutable” distinction but that needs to offer both deep and shallow
copying shouldn’t adopt this protocol. The NSCopying methods should by default be assumed to produce deep
copies; the class can then also implement methods to produce shallow copies.

Contrary to most methods, the returned value is owned by the caller, who is responsible for releasing it.

Making Mutable Copies of Objects

— (id)mutableCopyWithZone: (NSZone *)zone Returns a new instance that’s a top level, mutable copy of
the receiver. For a collection, objectsin the collection
areretained. Memory for the new instance is alocated
from zone. The returned object is owned by the caller,
who is responsible for releasing it.

2-158 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description

An object conforms to the NSObj CTypeSerializationCallBack protocol so that it can intervene in the serialization
and deserialization process. The primary purpose of this protocol isto allow for the serialization of objects and
other data typesthat aren’t directly supported by OpenStep's serialization facility. (See the NSSerializer class
specification for information on serialization.)

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt: (const void *)data
ofObjCType: (const char *)type
context: (id <NSObjCTypeSerializationCallBack>)callback

Thismethod can serialized all standard Objective C types(int, float, character strings, and so on) except for objects,
union, and void *. If, during the serialization process, an object is encountered, the object passed as the callback
argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {
NSString *stockName;
float value;

}i

The Objective C type codefor thisstructureis{ @f}, so the serialization process beginswith thismessage: (Assume
that theData is the NSMutableData object that's doing the serialization and helper is an object that conformsto
the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@"aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType:"{@iﬁ}" context:helper] ;

OpenStep Specification—10/19/94 Protocols: NSObjCTypeSerializationCallBack 2-159

Since thefirst field of the structure is an unsupported type, the helper object is sent a
serializeObjectAt:of Obj CType:intoData: message, letting it serialize the object. helper might implement the
method in this way:

- (void)serializeObjectAt: (id *)objectPtr
ofObjCType: (const char *)type
intoData: (NSMutableData *)theMutableData

NSString *nameObject;
char *companyName

nameObject = *objectPtr;
companyName = [nameObject cString];

[theData serializeDataAt:&companyName ofObjCType:@encode (typeof (companyName))

context:nil]

}

The callback object isfreeto serialize thetarget object asit wishes. Inthiscase, helper simply extractsthe company
name from the NSString object and then has that character string serialized. Once this callback method finishes
executing, the original method (serializeDataAt: of Obj CType: context:) resumes execution and serializes the
second field of the structure. Since this second field contains a supported type (float), the callback method is not
invoked again.

Deserialization follows asimilar pattern, except in this case NSData declares the central method
deserializeDataAt: of Obj CType:atCur sor:context:. The deserialization of the example structure starts with a
message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;
[theData deserializeDataAt:&aRecord ofObjCType:"{@iﬁ}" cursor:&cursor context:helper] ;
(The cursor argument is a pointer to zero since we're starting at the beginning of the datain the NSData object.)

When this method is invoked, the callback object receives a

deserializeObjectAt:of ObjCType:fromData: at Cur sor: message, as declared in this protocol. The callback
object can then reestablish thefirst field of the structure. For example, helper might implement the method in this
way:

- (void) deserializeObjectAt: (id *)objectPtr
ofObjCType: (const char *)type
fromData: (NSData *)data
atCursor: (unsigned *)cursor

char *companyName;

[theData deserializeDataAt:&companyName ofObjCType:"*" atCursor:cursor context:nil];
*objectPtr = [[NSString stringWithCString:companyName] retain];

2-160 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Callback Handling

— (void)deserializeObjectAt:(id *)object
of ObjCType:(const char *)type
fromData: (NSData *)data
atCursor : (unsigned int*)cursor

— (void)serializeObjectAt:(id *)object
of Obj CType:(const char *)type
intoData: (NSMutableData *)data

OpenStep Specification—10/19/94

The implementor of this method decodes the referenced
object (which should always be of type"@") located at
the cursor position in the data object. The decoded
object is not autorel eased. See description of NSData
method deserializeDataAt: of Obj CType: context:.

The implementor of this method encodes the referenced
object (which should always be of type" @") in the data
object. See description of NSMutableData method
serializeDataAt:of ObjCType: context:

Protocols: NSObjCTypeSerializationCallBack 2-161

NSObject

Adopted By: NSObject
NSProxy
Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol declares methods that all objects—no matter which root class they descend from
(NSObject, NSProxy, or another root class)—should implement to work well within OpenStep. Some of the
methods in this protocol reveal an object’s primary attributes: its position in the class hierarchy, its conformance to
other protocols, and whether it responds to specific messages. Others let it be manipulated in various ways. For
example, it can be asked to perform methods that are determined at runtime (using the perfor m:... methods) or to
participate in OpenStep’s automatic deall ocation scheme (using the retain, release, and autor elease methods).

By conforming to this protocol an object advertises that it has the basic behaviors necessary to work with the
OpenStep’s container classes (such as NSArray or NSDictionary).

Identifying and Comparing Instances

— (unsigned int)hash Returns an unsigned integer that can be used as atable
address in a hash table structure. Two objects that are
equal must hash to the same value.

— (BOOL)isEqual: (id)anObject Returns YES if the receiver and anObject have equal
values, otherwise returns NO.

—(id)self Returns the receiver.

Identifying Class and Superclass
— (Class)class Returns the class object for the receiver’s class.

— (Class)superclass Returns the class object for the receiver’s superclass.
Determining Allocation Zones

— (NSzZone *)zone Returns a pointer to the zone from which the receiver was
allocated.

2-162 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Sending Messages Determined at Run Time

— (id)perform: (SEL)aSel ector Sends an aSelector message to the receiver and returnsthe
result of the message. If aSelector isnull, an
NSInvalidArgumentException is raised.

— (id)perform: (SEL)aSelector Sends an aSelector message to the receiver with anObject
withObj ect: (id)anObject as an argument. If aSelector isnull, an
NSInvalidArgumentException is raised.
— (id)perform: (SEL)aSelector Sendsthe receiver an aSelector message with anObject and
withObj ect: (id)anObject another Object as arguments. If aSelector isnull, an
withObj ect: (id)another Object NSInvalidArgumentException is raised.

Identifying Proxies

— (BOOL)isProxy Returns YES to indicate that the receiver is an NSProxy,
rather than an object that descends from NSObject.
Otherwise, it returns NO.

Testing Inheritance Relationships

— (BOOL)isKindOfClass:(Class)aClass Returns YES if the receiver is an instance of aClass or an
instance of any class that inherits from aClass.
Otherwise, it returns NO.

— (BOOL)isM ember OfClass:. (Class)aClass Returns YES if the receiver is an instance of aClass.
Otherwise, it returns NO.

Testing for Protocol Conformance

— (BOOL)conformsToPr otocol: (Protocol *)aProtocol
Returns YES if the class of the receiver conforms to
aProtocol, and NO if it doesn't.

Testing Class Functionality

— (BOOL)respondsToSelector : (SEL)aSel ector Returns YES if the receiver implements or inherits a
method that can respond to aSelector messages, and NO
if it doesn't.

OpenStep Specification—10/19/94 Protocols: NSObject 2-163

Managing Reference Counts

— (id)autorelease Asdefinedinthe NSObject class, decrementsthereceiver’s
reference count. When the count reaches 0, adds the
object to the current autorelease pool. Returns self.
Objectsinthe pool arereleased |ater, typically at thetop
of the event loop.

— (oneway void)release Asdefinedinthe NSObject class, decrementsthereceiver's
reference count. When the count reaches 0, the object is
automatically deallocated immediately.

—(id)yretain As defined in the NSObject class, retain increments the
receiver’s reference count. You send an object aretain
message when you want to prevent it from being
deallocated without your express permission. Returns
self as a convenience.

— (unsigned int)retainCount Returns the receiver’s reference count for debugging
purposes.

Describing the Object

— (NSString *)description Returns a human-readabl e description of the receiver.

2-164 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Foundation Kit Functions

Memory Allocation Functions

Get the Virtual Memory Page Size
unsigned NSPageSize(void) Returns the number of bytesin a page.
unsigned NSL ogPageSize(void) Returns the binary log of the page size.

unsigned NSRoundDownToM ultipleOfPageSize(unsigned byteCount)
Returns the multiple of the page size that is closest to, but
not greater than, byteCount.

unsigned NSRoundUpToM ultipleOfPageSize(unsigned byteCount)
Returns the multiple of the page size that is closest to, but
not less than, byteCount.

Get the Amount of Real Memory

unsigned NSRealM emor yAvailable(void) Returns the number of bytes availablein the RAM.

Allocate or Free Virtual Memory

void * NSAllocateM emor yPages(unsigned byteCount)
Allocates the integral number of pages whose total sizeis
closest to, but not less than, byteCount, with the pages
guaranteed to be zero-filled.

void NSDeallocateM emor yPages(void * pointer, Deallocates memory that was allocated with

unsigned byteCount) NSAllocateM emor yPages().

void NSCopyM emor yPages(const void * source, Copies (or copies-on-write) byteCount bytes from source
void *destination, to destination.
unsigned byteCount)

Get a zone

NSZone *NSCreateZ one(unsigned startSize, Creates and returns pointer to anew zone of startSze bytes,
unsigned granularity, that grows and shrinks by granularity bytes. If canFree
BOOL canFree) isNO, the allocator never frees memory, and malloc()

will be fast.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-165

NSZone * NSDefaultM allocZ one(void)

NSZone *NSZoneFromPointer (void * pointer)

Allocate or Free Memory in a Zone

void *NSZoneM alloc(NSZone * zone,
unsigned size)

void *NSZoneCalloc(NSZone * zone,
unsigned numElems,
unsigned numBytes)

void * NSzZoneRealloc(NSZone * zone,
void * pointer,
unsigned size)

void NSRecycleZone(NSZone * zone)

void NSZoneFree(NSZone * zone,
void *pointer)

Name a Zone

void NSSetZoneName(NSZone * zone,
NSString * name)

NSString * NSZoneName(NSZone * zone)

2-166 Chapter 2: Foundation Kit

Returns the default zone, which is created automatically at
startup. Thisisthe zone used by malloc().

Returns the zone for the pointer block of memory, or
NULL if the block wasn't allocated from a zone. The
pointer must be one that was returned by a prior call to
an allocation function.

Allocates size bytes in zone, and returns a pointer to the
alocated memory.

Allocates memory from zone for numElems elements, each
with a size of numBytes, and returns a pointer to the
memory. The memory isinitialized with zeros.

Changes the size of the block of memory pointed to by
pointer to size bytes. It may allocate new memory to
replace the old, in which case it moves the contents of
the old memory block to the new block, up to a
maximum of size bytes. The pointer may be NULL.

Frees zone after adding any of its pointers still in useto the
default zone. (This strategy prevents retained objects
from being inadvertently destroyed.)

Returns memory to the zone from which it was all ocated.
The standard C function free() does the same, but
spends time finding which zone the memory belongsto.

Sets the specified zone's name to name, which can aid in
debugging.

Returns the name of zone.

OpenStep Specification—10/19/94

Object Allocation Functions

Allocate or Free an Object

NSObject *NSAllocateObj ect(Class aClass, Allocates and returns a pointer to an instance of aClass,
unsigned extraBytes, created in the specified zone (or in the default zone, if
NSZone * zone) zoneisNULL). extraBytes (usually 0) statesthe number

of extrabytes required for indexed instance variables.

NSObject *NSCopyObj ect(NSObject *anObject, Creates and returns a new object that’s an exact copy of
unsigned extraBytes, anObject. The second and third arguments have the
NSZone * zone) same meaning as in NSAllocateObject().

void NSDeallocateObj ect(NSObject * anObject) Deallocates anObject, which must have been allocated
using NSAllocateObj ect().

Decide Whether to Retain an Object

BOOL NSShouldRetainWithZone(NSObject *anObject,

NSZone * requestedZone) Returns YES if requestedZone is NULL, the default zone,
or the zone in which anObject was allocated. This
functionistypically called from inside an NSObject’s
copyWithZone: method, when deciding whether to
retain anObject as opposed to making a copy of it.

Modify the Number of References to an Object

BOOL NSDecrementExtraRefCountWasZ er o(id anObject)

Returns YES if the externally maintained “extra reference
count” for anObject is zero; otherwise, this function
decrements the count and returns NO.

void NSI ncrementExtraRefCount(id anObject) Increments the externally maintained “extra reference
count” for anObject. Thefirst reference (typically done
in the +alloc method) isn’'t maintained externally, so
there’'s no need to call thisfunction for that first
reference.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-167

Error-Handling Functions

Change the Top-level Error Handler

NSUncaughtExceptionHandler * NSGetUncaughtExceptionHandler (void)
Returns a pointer to the function serving as the top-level
error handler. This handler will process exceptions
raised outside of any exception-handling domain.

void NSSetUncaught ExceptionHandler (NSUncaughtExceptionHandler * handler)
Sets the top-level error-handling function to handler. If
handler isNULL or this function is never invoked, the
default top-level handler is used.

Macros to Handle an Exception

NS DURING Marks the beginning of an exception-handling domain (a
portion of code delimited by NS DURING and
NS HANDLER). When an error is raised anywhere
within the exception-handling domain, program
execution jumpsto thefirst line of codein the exception
handler. It'sillegal to exit the exception-handling
domain by any other means than
NS VALUERETURN, NS VOIDRETURN, or falling
out the bottom.

NS ENDHANDLER Marks the ending of an exception handler (a portion of
code delimited by NS HANDLER and
NS _ENDHANDLER).

NS HANDLER Marksthe ending of an exception-handling domain and the
beginning of the corresponding exception handler.
Within the scope of the handler, alocal variable called
exception stores the raised exception. Code delimited
by NS_ HANDLER and NS_ ENDHANDLER is never
executed except when an error israised in the preceding
exception-handling domain.

value NS VALUERETURN(value, type) Causesthemethod (or function) inwhich thismacro occurs
to immediately return value of type type. This macro
can only be used within an exception-handling domain.

NS VOIDRETURN Causesthemethod (or function) inwhich thismacro occurs
to return immediately, with no return value. This macro
can only be placed within an exception-handling
domain.

2-168 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Call the Assertion Handler from the Body of an Objective-C Method

NSAssert(BOOL condition,
NSString * description)

NSAssert1(BOOL condition,
NSString * description,
arg)

NSAssert2(BOOL condition,
NSString * description,
argl,
arg2)

NSAssert3(BOOL condition,
NSString * description,
argl,
argz,
arg3)

NSAssert4(BOOL condition,
NSString * description,
argl,
argz,
arg3,
arg4)

NSAssert5(BOOL condition,
NSString * description,
argl,
argz,
args,
arg4,
argb)

Callsthe NSAssertionHandler object for the current thread

if condition isfalse. The description should explain the
error, formatted asfor the standard C function printf();
it need not include the object’s class and method name,
since they're passed automatically to the handler.

Like NSAssert(), but the format string description

includes a conversion specification (such as %s or %d)
for the argument arg, in the style of printf(). You can
pass an object in arg by specifying % @, which gets
replaced by the string that the object’s description
method returns.

Like NSAssert1(), but with two arguments.

Like NSAsserti(), but with three arguments.

Like NSAssert1(), but with four arguments.

Like NSAssert1(), but with five arguments.

Call the Assertion Handler from the Body of a C Function

NSCAssert(BOOL condition,
NSString * description)

OpenStep Specification—10/19/94

Callsthe NSAssertionHandler object for the current thread

if condition isfalse. The description should explain the
error, formatted as for the standard C function printf();
it need not include the function name, which is passed
automatically to the handler.

Foundation Kit Functions 2-169

NSCAssert1(BOOL condition,
NSString * description,
arg)

NSCAssert2(BOOL condition,
NSString * description,
argl,
arg2)

NSCAssert3(BOOL condition,
NSString * description,
argl,
argz,
arg3)

NSCAssert4(BOOL condition,
NSString * description,
argl,
arg2,
arg3,
arg4)

NSCAssert5(BOOL condition,
NSString * description,
argl,
argz,
args,
arga,
argo)

Validate a Parameter

NSParameter Assert(BOOL condition)

NSCParameter Assert(BOOL condition)

Like NSCAssert(), but the format string description
includes a conversion specification (such as % sor % d)
for the argument arg, in the style of printf().

Like NSCAssert1(), but with two arguments.

Like NSCAssert1(), but with three arguments.

Like NSCAssert1(), but with four arguments.

Like NSCAssert1(), but with five arguments.

Like NSAssert(), but the description passed is “Invalid
parameter not satisfying: ” followed by the text of
condition (which can be any boolean expression).

LikeNSPar ameter Asser t(), but to be called from the body
of aC function.

Geometric Functions

Create Basic Structures

NSPoint NSM akePoint(float x, float y)

2-170 Chapter 2: Foundation Kit

Create an NSPoint having the coordinates x and y.

OpenStep Specification—10/19/94

NSSize NSM akeSize(float w, float h)

Create an NSSize having the specified width and height.

NSRect NSM akeRect(float x, float y, float w, float h) Create an NSRect having the specified origin and size.

NSRange NSM akeRange(unsigned int location, unsigned int length)

Get a Rectangle’s Coordinates
float NSM axX (NSRect aRect)
float NSMaxY (NSRect aRect)
float NSMidX(NSRect aRect)
float NSMidY (NSRect aRect)
float NSMinX(NSRect aRect)
float NSMinY (NSRect aRect)
float NSWidth(NSRect aRect)
float NSHeight(NSRect aRect)

Modify a Copy of a Rectangle

NSRect NSI nsetRect(NSRect aRect,
float dX,
float dY)

NSRect NSOffsetRect(NSRect aRect,
float dX,
float dY)

void NSDivideRect(NSRect inRect,
NSRect *dlice,
NSRect *remainder,
float amount,
NSRectEdge edge)

NSRect NS| ntegr alRect (NSRect aRect)

OpenStep Specification—10/19/94

Create an NSRange having the specified location and
length.

Returns the largest x-coordinate value within aRect.
Returns the largest y-coordinate value within aRect.
Returns the x-coordinate of the rectangle’s center point.
Returns the y-coordinate of the rectangle's center point.
Returns the smallest x-coordinate value within aRect.
Returns the smallest y-coordinate value withinaRect .
Returns the width of aRect.

Returns the height of aRect.

Returns a copy of the rectangle aRect, altered by moving
the two sides that are parallel to the y-axisinwards by
dX, and the two sides parallel to the x-axis inwards by
dy.

Returns a copy of the rectangle aRect, with itslocation
shifted by dX along the x-axis and by dY aong the
y-axis.

Creates two rectangles, slice and remainder, from inRect,
by dividing inRect with aline that’s parallel to one of
inRect’s sides (namely, the side specified by edge—
either NSMinXEdge, NSMinY Edge, NSMaxXEdge, or
NSMaxY Edge). The size of diceis determined by
amount, which measures the distance from edge.

Returns a copy of the rectangle aRect, expanded outwards
just enough to ensure that none of its four defining
values (X, y, width, and height) have fractional parts. If
aRect’swidth or height iszero or negative, thisfunction
returnsarectanglewith origin at (0.0, 0.0) and with zero
width and height.

Foundation Kit Functions 2-171

Compute a Third Rectangle from Two Rectangles

NSRect NSUnionRect(NSRect aRect, Returns the smallest rectangle that completely encloses
NSRect bRect) both aRect and bRect. If one of the rectangles has zero
(or negative) width or height, a copy of the other
rectangleisreturned; but if both have zero (or negative)
width or height, the returned rectangle hasits origin at
(0.0, 0.0) and has zero width and height.

NSRect NSI nter sectionRect (NSRect aRect, Returns the graphic intersection of aRect and bRect. If the
NSRect bRect) two rectangles don’t overlap, the returned rectangle has
itsorigin at (0.0, 0.0) and zero width and height. (This

includes situations where the intersection isapoint or a

line segment.)
Test Geometric Relationships
BOOL NSEqualRects(NSRect aRect, Returns YES if the two rectangles aRect and bRect are
NSRect bRect) identical, and NO otherwise.
BOOL NSEqualSizes(NSSize aSze, Returns YES if the two sizes aSze and bSize are identical,
NSSize bSze) and NO otherwise.
BOOL NSEqualPoints(NSPoint aPoint, Returns YES if the two points aPoint and bPoint are
NSPoint bPoint) identical, and NO otherwise.
BOOL NSIsEmptyRect(NSRect aRect) Returns YES if the rectangle encloses no area at all—that
is, if itswidth or height is zero or negative.
BOOL NSM ousel nRect(NSPoint aPoint, Returns YES if the point represented by aPoint is located
NSRect aRect, within the rectangle represented by aRect. It assumes
BOOL flipped) an unscaled and unrotated coordinate system; the

argument flipped should be YES if the coordinate
system has been flipped so that the positive y-axis
extends downward. This function is used to determine
whether the hot spot of the cursor liesinside a given

rectangle.
BOOL NSPointlnRect(NSPoint aPoint, Performs the same test as NSM ousel nRect(), but assumes
NSRect aRect) aflipped coordinate system.
BOOL NSContainsRect(NSRect aRect, Returns YES if aRect completely encloses bRect. For this
NSRect bRect) to betrue, bRect can’t be empty and none of itssidescan

touch any of aRect’s.

2-172 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Get a String Representation

NSString * NSStringFromPoint(NSPoint aPoint)

NSString * NSStringFromRect(NSRect aRect)

NSString *NSStringFromSize(NSSize aSze)

Returns a string of the form “{x=a; y=b}", wherea and b
are the x- and y-coordinates of aPoint.

Returns a string of the form “{ x=a; y=b; width=c;
height=d}”, where a, b, ¢, and d are the x- and
y-coordinates and the width and height, respectively, of
aRect.

Returnsastring of the form “{width=a; height=b}”, where
a and b are the width and height of aSze.

Range Functions

Query a Range

BOOL NSEqualRanges(NSRange rangel,
NSRange range?)

unsigned NSM axRange(NSRange range)

BOOL NSL ocationl nRange(unsigned location,
NSRange range)

Compute a Range from Two Other Ranges

NSRange NSUnionRange(NSRange rangel,
NSRange range2)

NSRange NSl nter sectionRange(NSRange rangel,
NSRange range?)

Get a String Representation

NSString * NSStringFromRange(NSRange range)

OpenStep Specification—10/19/94

Returns YES if rangel and range2 have the same
locations and lengths.

Returnsrange.location + range.length—in other words, the
number one greater than the maximum value within the
range.

Returns YES if location isin range (that is, if location is
greater than or equal to range.location and location is
less than NSM axRange(range)).

Returns a range whose maximum value is the greater of
rangel’s and range2's maximum values, and whose
location isthe lesser of the two range's locations.

Returns a range whose maximum value is the lesser of
rangel’s and range2’s maximum values, and whose
location is the greater of the two range’s locations.
However, if the two ranges don't intersect, the returned
range has alocation and length of zero.

Returns a string of the form: “{location = a; length=b}",
where a and b are non-negative integers.

Foundation Kit Functions 2-173

Hash Table Functions

Create a Table

NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks,

unsigned capacity)

Creates, and returns a pointer to, an NSHashTablein the

default zone; the table's size is dependent on (but
generally not equal to) capacity. If capacity is0, asmall
hash tableis created. The NSHashTableCallBacks
structure callBacks has five pointers to functions
(documented under “ Types and Constants”), with the
following defaults: pointer hashing, if hash() iSNULL;
pointer equality, if isEqual() isNULL; no call-back
upon adding an element, if retain() isNULL; no
call-back upon removing an element, if release() is
NULL; and afunction returning a pointer’s
hexadecimal value as a string, if describe() isNULL.
The hashing function must be defined such that if two
data elements are equal, as defined by the comparison
function, the values produced by hashing on these
elements must also be equal. Also, data elements must
remain invariant if the value of the hashing function
depends on them; for example, if the hashing function
operatesdirectly onthe charactersof astring, that string
can't change.

NSHashTable *NSCreateHashTableWithZ one(NSHashTableCallBacks callBacks,

unsigned capacity,
NSZone * zone)

Like NSCreateHashTable(), but creates the hash table in

zone instead of in the default zone. (If zoneisNULL,
the default zone is used.)

NSHashTable *NSCopyHashTableWithZone(NSHashTable *table,

NSZone * zone)

Free a Table

void NSFreeHashTable(NSHashTable *table)

void NSResetHashTable(NSHashTable *table)

2-174 Chapter 2: Foundation Kit

Returns a pointer to a new copy of table, created in zone

and containing copies of table’s pointers to data
elements. If zoneis NULL, the default zone is used.

Releases each element of the specified hash table and frees

the table itself.

Rel eases each element but doesn't deallocatethetable. This

isuseful for preserving the table's capacity.

OpenStep Specification—10/19/94

Compare Two Tables

BOOL NSCompareHashTables(NSHashTable *tablel,
NSHashTable *table2) Returns YES if the two hash tables are equal—that is, if
each element of tablel isin table2, and the two tables
arethe same size.

Get the Number of Items

unsigned NSCountHashTable(NSHashTable *table) Returns the number of elementsin table.

Retrieve ltems

void * NSHashGet(NSHashTable *table, Returns the pointer in the table that matches pointer (as
const void * pointer) defined by theisEqual() call-back function). If thereis
no matching element, the function returns NULL

NSArray *NSAllHashTableObjects(NSHashTable *table)
Returnsan array object containing all the elementsof table.
This function should be called only when the table
elements are objects, not when they’re any other data

type.

NSHashEnumerator NSEnumer ateHashTable(NSHashTable *table)

Returns an NSHashEnumerator structure that will cause
successive elements of table to be returned each time
this enumerator is passed to
NSNextHashEnumer ator Item().

void * NSNextHashEnumer ator | tem(NSHashEnumerator * enumerator)
Returns the next element in the table that enumerator is
associated with, or NULL if enumerator has already
iterated over al the elements.

Add or Remove an Item

void NSHashlnsert(NSHashTable *table, Inserts pointer, which must not be NULL, into table. If
const void *pointer) pointer matches an item already in the table, the
previous pointer is released using the release()
call-back function that was specified when thetablewas
created.

void NSHashl nsertK nownAbsent(NSHashTable *table,
const void * pointer) I nserts pointer, which must not be NULL, into table. Unike
NSHashlnsert(), this function raises
NSInvalidArgumentException if table already includes
an element that matches pointer.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-175

void *NSHashl nsertlfAbsent(NSHashTable *table, If pointer matches an item already in table, thisfunction
const void * pointer) returns the pre-existing pointer; otherwise, it adds
pointer to the table and returns NULL.

void NSHashRemove(NSHashTable *table, If pointer matches an item already in table, this function
const void * pointer) releases the pre-existing item.

Get a String Representation

NSString *NSStringFromHashTable(NSHashTable *table)

Returns a string describing the hash table's contents. The
function iterates over the table's elements, and for each
one appends the string returned by the describe()
call-back function. If NULL was specified for the
call-back function, the hexadecimal value of each
pointer is added to the string.

Map Table Functions

Create a Table

NSMapTable * NSCreateM apTable(NSMapTableK eyCallBacks keyCallBacks,

NSMapTableValueCallBacks valueCallBacks,

unsigned capacity) Creates, and returns a pointer to, an NSMapTable in the
default zone; the table's size is dependent on (but
generally not equal to) capacity. If capacity is0, asmall
map table is created. The NSMapTableKeyCallBacks
arguments are structures (documented under “ Types
and Constants’) that are very similar to the call-back
structure used by NSCreateHashTable(); in fact, they
have the same defaults as documented for that function.

NSMapTable * NSCreateM apTableWithZone(NSMapTableK eyCallBacks keyCallBacks,
NSMapTableValueCallBacks valueCallBacks,
unsigned capacity, Like NSCreateM apTable(), but creates the map tablein
NSZone * zone) zone instead of in the default zone. (If zoneisNULL,
the default zone is used.)

NSMapTable *NSCopyM apTablewWithZone(NSMapTable *table,
NSZone * zone) Returns a pointer to a new copy of table, created in zone
and containing copies of table’s key and value pointers.
If zoneis NULL, the default zoneis used.

2-176 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Free a Table

void NSFreeM apTable(NSMapTable *table) Releases each key and value of the specified map table and
freesthe table itself.

void NSResetM apTable(NSMapTable *table) Releases each key and value but doesn’t deallocate the
table. Thisisuseful for preserving the table's capacity.

Compare Two Tables:

BOOL NSCompareM apTables(NSMapTable *tablel,
NSMapTable *table?) Returns Y ESif each key of tablel isin table2, and the two
tablesare the same size. Note that thisfunction does not
compare values, only keys.

Get the Number of Items

unsigned NSCountM apTable(NSMapTable *table) Returns the number of key/value pairsin table.

Retrieve ltems

BOOL NSMapM ember (NSMapTable *table, Returns YES if table contains a key equal to key. If so,
const void *key, originalKey is set to key, and valueis set to the value that
void **original Key, the table maps to key.
void **value)

void *NSM apGet(NSMapTable *table, Returns the value that table maps to key, or NULL if the
const void * key) table doesn’t contain key.

NSMapEnumerator NSEnumer ateM apTable(NSMapTable *table)

Returns an NSMapEnumerator structure that will cause
successive key/value pairs of table to be visited each
time this enumerator is passed to
NSNextM apEnumer ator Pair ().

BOOL NSNextM apEnumer ator Pair (NSMapEnumerator * enumerator,
void **key, Returns NO if enumerator has aready iterated over al the
void **value) elementsin thetablethat enumerator isassociated with.
Otherwise, thisfunction sets key and value to match the
next key/value pair in the table, and returns YES.

NSArray *NSAIIM apTableK eys(NSMapTable *table)
Returns an array object containing al the keysin table.
Thisfunction should be called only when the table keys
are objects, not when they’re any other type of pointer.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-177

NSArray *NSAIIM apTableValues(NSMapTable *table)

Returns an array object containing all the valuesin table.
This function should be called only when the table
values are objects, not when they’re any other type of

pointer.
Add or Remove an Item
void NSM apl nsert(NSMapTable *table, Inserts key and value into table. If key matches a key
const void *key, aready in the table, valueis retained and the previous
const void *value) valueisreleased, using the retain and release call-back

functions that were specified when the table was
created. Raises NSInvalidArgumentException if key is
equal to the notAKeyMarker field of the table's
NSMapTableKeyCallBacks structure.

void *NSM apl nsertIfAbsent(NSMapTable *table, If key matches akey aready in table, this function returns
const void * key, the pre-existing key; otherwise, it adds key and value to
const void *value) the table and returns NUL L. Raises
NSInvalidArgumentException if key is equal to the
notAKeyMarker field of thetable's
NSMapTableKeyCallBacks structure.

void NSM aplnsertK nownAbsent(NSMapTable *table,

const void *key, Inserts key (which must not be notAKeyMarker) and value
const void *value) into table. Unike NSM apl nsert(), this function raises
NSInvalidArgumentException if table aready includes
akey that matches key.
void NSM apRemove(NSMapTable *table, If key matches akey already in table, this function releases
const void *key) the pre-existing key and its corresponding value.

NSString *NSStringFromM apTable(NSMapTable *table)

Returns a string describing the map table’'s contents. The
functioniterates over thetable skey/valuepairs, and for
each one appendsthe string “ a = b;\n”, whereaand b
are the key and value strings returned by the
corresponding describe() call-back functions. If NULL
was specified for the call-back function, aand b are the

key and value pointers, expressed as hexadecimal
numbers.

2-178 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Miscellaneous Functions

Get Information about a User
NSString * NSUser Name(void)
NSString *NSHomeDir ector y(void)
NSString *NSHomeDir ector yFor User (NSString * userName)

Log an Error Message

void NSL og(NSString *format, ...) Writes to stderr an error message of the form:
“time processName processl D format”. The format
argument to NSL og() isaformat string in the style of
the standard C function printf(), followed by an
arbitrary number of arguments that match conversion
specifications (such as % s or %d) in the format string.
(You can pass an object in the list of arguments by
specifying % @ in the format string—this conversion
specification getsreplaced by the string that the object’s
description method returns.)

void NSL ogv(NSString *format, va_list args) Like NSL og(), but the arguments to the format string are
passed in asingle va lit, in the manner of vprintf().

Get Localized Versions of Strings

NSString *NSL ocalizedString(NSString * key, Returns alocalized version of the string designated by key.
NSString * comment) The default string table (L ocalizable.strings) in the
main bundleissearched for key. comment isignored, but
can provide information for translators.

NSString *NSL ocalizedStringFromTable(NSString * key,

NSString * tableName, Like NSL ocalizedString(), but searches the specified
NSString * comment) table.

NSString * NSL ocalizedStringFromTablel nBundle(NSString * key,
NSString * tableName, Like NSL ocalizedStringFromTable, but uses the
NSBundle *aBundle, specified bundle instead of the application’s main
NSString * comment) bundle.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-179

Convert to and from a String

Class NSClassFromString(NSString *aClassName) Returns the class object named by aClassName, or nil if
none by this nameis currently loaded.

SEL NSSelector FromString(NSString * aSelectorName)
Returns the selector named by aSelectorName, or zero if
none by this name exists.

NSString *NSStringFromClass(Class aClass) Returns an NSString containing the name of aClass.
NSString *NSStringFromSelector (SEL aSelector) Returns an NSString containing the name of aSelector.

Compose a Message To Be Sent Later to an Object

NSInvocation *NS_INVOCATION(Class aClass, Returns an NSl nvocation object which you can later ask to
instanceMessage) dispatch instanceMessage to an instance of aClass.

(You later use NSlnvocation's set Target: method to
make a specific instance of aClass the receiver of the
message, after which you use invoke to cause the
message to be sent and getReturnValue: to retrievethe
result.) Because thisis a macro, message can be any
Objective C message understood by an instance of
aClass, even a message with multiple arguments.

NSInvocation *NS_M ESSAGE(id anObject, Like NS_INVOCATION(), but the first argument is an
instanceMessage) instance of aclass, rather than aclass. Thetarget of the
message will be anObject, so later you don't use
setTarget:, only invoke and getReturnValue:.

2-180 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Types and Constants

Exception Handling

typedef struct NSHandler NSHandler; Exception handler information.

typedef volatile void NSUncaughtExceptionHandler (NSException * exception);
Register an uncaught exception handler.

NSString *NSI nconsistentAr chiveException; Consistency error in archive file.

NSString *NSGenericException; General programming error.

NSString * NSl nter nall nconsistencyException; Some item that should be invariant changed.

NSString *NSI nvalidArgumentException; Invalid argument.

NSString *NSM allocException; No memory |eft to allocate.

NSString * NSRangeException; Attempt to access an element beyond the limit of an array

or similar structure.
NSString * NSByteStor el ockedException;
NSString * NSByteStor eVer sionException;
NSString *NSBTreeStoreK ey ToolL ar geException;
NSString * NSByteStoreDamagedException;

Geometry

typedef struct NSPoint { Point definition.
float x;
float y;

} NSPoint;

typedef struct _NSSize { Rectangle sizes.
float width;
float height;

} NSSize;

OpenStep Specification—10/19/94 Types and Constants 2-181

typedef struct NSRect { Rectangle.
NSPoint origin;
NSSize size;
} NSRect;
typedef enum _NSRectEdge { Sides of arectangle.
NSMinXEdge,
NSMinY Edge,
NSMaxXEdge,

NSMaxY Edge
} NSRectEdge;

const NSPoint NSZeroPoint; A zero point.
const NSRect NSZ er oRect; A zero origin rectangle.

const NSSize NSZeroSize; A zero size rectangle.

Hash Table

typedef struct NSHashEnumerator; Private type for enumerating.
typedef struct NSHashTable NSHashTable; Hash table type.

typedef struct { Callback functions.
unsigned (*hash)(NSHashTable *table, const void *anObject);
Hashing function. Note: Elements with equal values must
have equal hash function values.
BOOL (*isEqual)(NSHashTable *table, const void *anObject, const void * anObject);
Comparison function.
void (*retain)(NSHashTable *table, const void *anObject);
Retaining function called when adding elementsto table.
void (*release)(NSHashTable *table, void *anObject);
Releasing function called when a data element is removed
from the table.
NSString * (*describe)(NSHashTable *table, const void * anObject);
Description function.
} NSHashTableCallBacks;

2-182 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

const NSHashTableCallBacks NSl ntHashCallBacks; For sets of pointer-sized or smaller quantities.

const NSHashTableCallBacks NSNonOwnedPointer HashCallBacks;
For sets of pointers hashed by address.

const NSHashTableCallBacks NSNonRetainedObj ectHashCallBacks;
For sets of objects without retaining and releasing.

const NSHashTableCallBacks NSObjectHashCallBacks,
For sets of objects; similar to NSSet.

const NSHashTableCallBacks NSOwnedPointer HashCallBacks;
For sets of pointers with transfer of ownership upon
insertion.

const NSHashTableCallBacks NSPointer ToStructHashCallBacks;
For sets of pointers to structs when the first field of the
struct isthe size of aniint.

Map Table
typedef struct NSMapEnumer ator; Private type for enumerating.
typedef struct NSMapTable NSMapTable; Map table type.
typedef struct { Callback functions for akey.

unsigned (*hash)(NSMapTable *table, const void * anObject);
Hashing function. Note: Elements with equal values must
have equal hash function values.
BOOL (*isEqual)(NSMapTable *table, const void *anObject, const void *anObject);
Comparison function.
void (*retain)(NSMapTable *table, const void *anObject);
Retaining function called when adding elementsto table.
void (*release)(NSMapTable *table, void *anObject);
Releasing function called when a data element is removed
from the table.
NSString * (*describe)(NSMapTable *table, const void *anObject);
Description function.
const void *notAKeyMarker; Quantity that is not akey to the hash table.
} NSMapTableK eyCallBacks;

OpenStep Specification—10/19/94 Types and Constants 2-183

typedef struct { Callback functions for avalue.
void (*retain)(NSMapTable *table, const void * anObject);
Retaining function called when adding elements to table.
void (*release)(NSMapTable *table, void *anObject);
Releasing function called when a data element is removed
from the table.
NSString * (*describe)(NSMapTable *table, const void * anObject);
Description function.
} NSMapTableValueCallBacks,

#define NSNotAnlntMapKey; Quantity that is never amap key.
#define NSNotAPointer M apK ey; Quantity that is never amap key.

const NSMapTableKeyCallBacks NSIntM apK eyCallBacks;
For keys that are pointer-sized or smaller quantities.

const NSMapTableVa ueCallBacks NSIntM apValueCallBacks;
For values that are pointer-sized quantities.

const NSMapTableKeyCallBacks NSNonOwnedPointer M apK eyCallBacks;
For keys that are pointers not freed.

const NSMapTableVal ueCallBacks NSNonOwnedPointer M apValueCallBacks;
For values that are owned pointers.

const NSMapTableKeyCallBacks NSNonOwnedPointer Or NullM apK eyCallBacks,
For keysthat are pointers not freed, or NULL.

const NSMapTableKeyCallBacks NSNonRetainedObj ectM apK eyCallBacks;
For sets of objects without retaining and releasing.

const NSMapTableKeyCallBacks NSObjectM apK eyCallBacks;
For keys that are objects.

const NSMapTableVal ueCallBacks NSObj ectM apValueCallBacks,
For values that are objects.

const NSMapTableKeyCallBacks NSOwnedPointer M apK eyCallBacks,
For keys that are pointers with transfer of ownership upon
insertion.

const NSMapTableValueCallBacks NSOwnedPointer M apValueCallBacks;
For values that are owned pointers.

2-184 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

Notification Queue

typedef enum {
NSPostWhenldle, Post the notification when the run loop isidle.
NSPostASAPR, Post the notification as soon as possible.
NSPostNow Post the notification immediately.

} NSPostingStyle;

typedef enum {
NSNotificationNoCoalescing, Do not coalesce similar notifications in the queue.
NSNotificationCoalescingOnName, Coalesce natifications in the queue matching name.
NSNotificationCoalescingOnSender, Coalesce natifications in the queue matching sender.

} NSNotificationCoalescing;

Run Loop

NSString *NSConnectionReplyM ode; NSRunL oop mode in which Distributed Object system
seeks replies.

NSString *NSDefaultRunL oopM ode; Common NSRunL oop mode.

Search Results

typedef enum _NSComparisonResult { Ordered comparison resullts.
NSOrderedAscending,
NSOr deredSame,
NSOr deredDescending

} NSComparisonResult;

enum { Flags passed to various search methods.
NSCasel nsensitiveSear ch,
NSLiteralSearch,
NSBackwar dsSear ch,
NSAnchoredSearch

1

enum { NSNotFound}; Indicates an item not found.

OpenStep Specification—10/19/94 Types and Constants 2-185

String

typedef unsigned NSStringEncoding;

enum
NSASCIIStringEncoding,
NSNEXT ST EPStringEncoding,
NSJapaneseEUCStringEncoding,
NSUTF8StringEncoding,
NSISOL atin1StringEncoding ,
NSSymbol StringEncoding ,
NSNonL ossyASCI|StringEncoding,
NSShiftJI SStringEncoding,
NSISOL atin2StringEncoding,
NSUnicodeStringencoding

1

enum _NSOpenStepUnicodeReservedBase {
NSOpenStepUnicodeReser vedBase

b
NSHashStringL ength;
NSMaximumsStringL ength;

Known encodings.

Known encodings.

Base for Unicode characters.

Hash string length.

Maximum string length.

Threads

typedef enum {
NSInteractiveT hreadPriority,
NSBackgroundThreadPriority,
NSLowThreadPriority

} NSThreadPriority;

NSString *NSBecomingM ultiThreaded;
NSString *NST hreadEXxiting;

2-186 Chapter 2: Foundation Kit

Thread priorities.

Notifications.

OpenStep Specification—10/19/94

User Defaults

NSString *NSArgumentDomain; For defaults parsed from the application’s arguments.
NSString *NSGlobalDomain; For defaults seen by all applications.

NSString *NSRegistrationDomain; For registered defaults.

NSString *NSUser DefaultsChanged; Public notification.

NSString *NSWeekDayNameArray; Keys for language-dependent information.

NSString * NSShortWeekDayNameArray;
NSString *NSM onthNameArray;

NSString *NSShortM onthNameArray;
NSString *NSTimeFormatString;

NSString *NSDateFor matString;

NSString *NSTimeDateFor matString;
NSString *NSShortTimeDateFor matString;
NSString *NSCurrencySymbol;

NSString *NSDecimal Separ ator ;

NSString * NST housandsSepar ator;
NSString * NSl nternational CurrencyString;
NSString *NSCurrencyString;

NSString *NSDecimal Digits;

NSString *NSAM PM Designation;

OpenStep Specification—10/19/94 Types and Constants 2-187

Miscellaneous

typedef struct { Specifies layout of arguments used in invocations.
int offset;
int size;
char *type;

} NSArgumentlnfo;

typedef struct NSRange { Specifies arange of itemsin arrays, strings, and so on.
unsigned int location;
unsigned int length;

} NSRange;
typedef double NSTimel nterval; Time interval difference between two dates.
typedef struct NSZone NSZone; Large region alocation.

typedef int NSBTreeCompar ator (NSData*, NSData *, const void *);

2-188 Chapter 2: Foundation Kit OpenStep Specification—10/19/94

3 Display Post&cript

Classes

Classes listed here and the protocol in the following section constitute OpenStep’s object-oriented interface to the
Display PostScript System. As such, many of the argument and return types that appear bel ow (specifically, those
having a“DPS’ prefix) are not described in this document. Rather, they are detailed in the specification for the
Display PostScript System itself, as found in the Display PostScript System, Client Library Reference Manual, by
Adobe Systems Incorporated.

NSDPSContext

Inherits From: NSObject

Conforms To: NSObject (NSObject)
Declared In: DPSClient/NSDPSContext.h

Class Description

The NSDPSContext class is the programmatic interface to objects that represent Display PostScript System
contexts. A context can be thought of as a destination to which PostScript code is sent for execution. Each Display
PostScript context contains its own complete PostScript environment including its own local VM (PostScript
Virtual Memory). Every context hasits own set of stacks, including an operand stack, graphics state stack,
dictionary stack, and execution stack. Every context also contains a FontDirectory which islocal to that context,
plusaSharedFontDirectory that isshared acrossall contexts. There arethree built-in dictionariesin thedictionary
stack. From top to bottom, they are userdict, globaldict, and systemdict. userdict is private to the context, while

OpenStep Specification—10/19/94 Classes: NSDPSContext 3-1

globaldict and systemdict are shared by all contexts. globaldict isamaodifiable dictionary containing information
common to all contexts. systemdict isaread-only dictionary containing all the PostScript operators.

At any time thereis the notion of the current context. The current context for the current thread may be set using
setCurrentContext:.

NSDPSContext objects by default write their output to a specified data destination. Thisis used for printing,
FAXing, and for generation of saved EPS (Encapsul ated PostScript) code. The meansto create contextsthat interact
with displays are platform-specific.

The NSApplication object creates a context by default.

NSDPSContext Objects and Display PostScript System Context Records

When an NSDPSContext object iscreated, it creates and manages a DPSContext record. Programmersfamiliar with
the client side C function interface to the Display PostScript System can access the DPSContext record by sending
acontext message to an NSDPSContext object. You can then operate on this context record using any of the
functions or single operator functions defined in the Display PostScript System client library. Conversely, you can
create an NSDPSContext object from a DPSContext record with the DPSContextObject() function, as defined in
“Client Library Functions’. You can then work with the created NSDPSContext object using any of the methods
described here.

General Exception Conditions

A variety of exceptions can be raised from NSDPSContext. In most cases, exceptions are raised because of errors
returned from the Display PostScript Server. Exceptions are listed under “ Types and Constants.” Also see the
Display PostScript System, Client Library Reference Manual, by Adobe Systems Incorporated, for more detailson
Display PostScript System error names and their possible causes.

Initializing a Context

—initWithM utableData: (NSMutableData *)data Initializes a newly allocated NSDPSContext that writes its
for Debugging: (BOOL)debug output to data using the language and name encodings
languageEncoding: (DPSProgramEncoding)langEnc
nameEcoding: (DPSNameEncoding)nameEnc specified by langEnc and nameEnc. The callback
textProc: (DPSTextProc)tProc functions tProc and errorProc handle text and errors
errorProc: (DPSErrorProc)errorProc generated by the context. If debugisYES, theoutput is

given in human-readable form in which large structures
(such asimages) may be represented by comments.

Testing the Drawing Destination

3-2

— (BOOL)isDrawingToScreen Returns YES if the drawing destination is the screen.

Chapter 3: Display PostScript OpenStep Specification—10/19/94

Accessing Context Data

— (NSMutableData *)mutableData Returns the receiver’s data object.

Setting and Identifying the Current Context
+ (NSDPSContext *)currentContext Returns the current context of the current thread.

+ (void)setCurrentContext: (NSDPSContext *)context
Installs context as the current context of the current thread.

— (DPSContext)DPSContext Returns the corresponding DPScontext.

Controlling the Context
— (void)flush Forces any buffered data to be sent to its destination.
— (void)interruptExecution Interrupts execution in the receiver’s context.

— (void)notifyObjectWhenFinishedExecuting: (id <NSDPSContextNotification>)object
Registers object to receive a contextFinishedExecuting:
message when the NSDPSContext’s destination is
ready to receive more input.

— (void)resetCommunication Discards any data that hasn’t already been sent to its
destination.
— (void)wait Waits until the NSDPSContext’s destination is ready to

receive more input.

Managing Returned Text and Errors

+ (NSString *)stringFor DPSError : (const DPSBinObjSegRec *)error
Returns a string representation of error.

— (DPSErrorProc)error Proc Returns the context’s error callback function.

— (void)setErrorProc: (DPSErrorProc)proc Sets the context’s error callback function to proc.
— (void)set TextProc: (DPSTextProc)proc Sets the context’s text callback function to proc.
— (DPSTextProc)textProc Returns the context’s text callback function.

Sending Raw Data

— (void)printFor mat: (NSString *)format,... Constructs a string from format and following string
objects (in the manner of printf()) and sendsit to the
context’s destination.

OpenStep Specification—10/19/94 Classes: NSDPSContext ~ 3-3

— (void)printFor mat: (NSString *)format
arguments:(va list)argList

— (void)writeData: (NSData *) buf

Constructs a string from format and argList (in the
manner of vprintf()) and sendsit to the context’s
destination.

Sendsthe PostScript datain buf to the context’s destination.

— (void)writePost ScriptWithL anguageEncodingConver sion: (NSData *) buf

Managing Binary Object Sequences
— (void)awaitReturnValues

— (void)writeBOSArray:(const void *)data
count: (unsigned int)items
of Type: (DPSDefinedType)type

— (void)writeBOSNumString:(const void *)data
length: (unsigned int)count
of Type: (DPSDefinedType)type
scale: (int)scale

— (void)writeBOSString: (const void *)data
length: (unsigned int)bytes

Writes the PostScript datain buf to the context’s
destination. The data, formatted as plain text, encoded
tokens, or abinary object sequence, is converted as
necessary depending on the language encoding of the
receiving context.

Waits for al return values from the result table.

Write an array to the context’s destination as part of a
abinary object sequence. The array istaken from data
and consists of items items of type type.

Writeanumber string to the context’s destination as part of
abinary object sequence. The string is taken from data
as described by count, type, and scale.

Write a string to the context’s destination as part of a
binary object sequence. The string is taken from bytes
(acount) of data.

— (void)writeBinaryObj ect Sequence: (const void *)data

length: (unsigned int)bytes

— (void)updateNameM ap

Managing Chained Contexts

Write abinary object sequenceto the context’s destination.
The sequence consists of bytes (a count) of data.

Updates the context’s name map from the client library’s
name map.

— (void)chainChildContext: (NSDPSContext *)child Links child (and all of it's children) to the receiver asits

— (NSDPSContext *)childContext
— (NSDPSContext *)parentContext

— (void)unchainContext

3-4 Chapter 3: Display PostScript

chained context, a context that receives a copy of all
PostScript code sent to the receiver.

Returnsthe receiver’s child context, or nil if none exists.
Returns the receiver’s parent context, or nil if none exists.

Unlinksthe child context (and all of it's children) from the
receiver’'slist of chained contexts.

OpenStep Specification—10/19/94

Debugging Aids
+ (BOOL)areAllContextsOutput Tr aced

+ (BOOL)areAllContextsSynchronized

+ (void)setAllContextsOutputTraced: (BOOL)flag

+ (void)setAllContextsSynchronized: (BOOL)flag

—(BOOL)isOutputTraced

— (BOOL)isSynchronized

— (void)setOutput Traced: (BOOL)flag

— (void)setSynchronized: (BOOL)flag

OpenStep Specification—10/19/94

Returns YES if the data flowing between the application’s
contexts and their destinations is copied to diagnostic
output.

Returns YESif all NSPDSContext objects invoke the wait
method after sending each batch of output.

Causes the data (PostScript code, return values, etc.)
flowing between the all the application’s contexts and
their destinations to be copied to diagnostic output.

Causes the wait method to be invoked each time an
NSDPSContext object sends a batch of output to its
destination.

Returns YES if the data flowing between the application’s
single context and its destination is copied to diagnostic
output.

Returns whether the wait method isinvoked each time the
receiver sends a batch of output to the server.

Causes the data (PostScript code, return values, etc.)
flowing between the application’ s single context and the
Display PostScript server to be copied to diagnostic
output.

Sets whether the wait method isinvoked each time the
receiver sends a batch of output to its destination.

Classes. NSDPSContext 3-5

Protocols

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: DPSClient/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

Synchronizing Application and Display PostScript Sewver Execution

— (void)contextFinishedExecuting: (NSDPSContext *)context
Notifiesthe receiver that the context hasfinished executing
a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting:
(NSDPSContext).

3-6 Chapter 3: Display PostScript OpenStep Specification—10/19/94

Display PostScript Operators

The PostScript Language Reference Manual, Second Edition, by Adobe Systems Incorporated, provides the
specifications for standard PostScript and Display PostScript operators. Listed here are operators found in
OpenStep but not in the standard implementation of the PostScript language.

Compositing Operators

srcy srey width height srcgstate
dest, dest, op

dest, dest, width height op

srcy srey width height srcgstate
dest, desty delta

Graphics State Operators

coverage

OpenStep Specification—10/19/94

composite —

compositerect —

dissolve -

setalpha —

currentalpha coverage

Compositesrectanglein source graphics state
with image in current window.

Composites rectangle of current color and
coverage with image in current graphics
State.

Dissolvesbetween areaof window referred to
by srcgstate and equal area of window
referred to by the current graphics state.

Sets the current coverage.

Returns the current coverage setting.

Display PostScript Operators ~ 3-7

Client Library Functions

The Display PostScript Client Library is composed of system-dependent and a system-independent parts. The
Display PostScript System, Client Library Reference Manual, by Adobe Systems, Incorporated., provides the
specification for the system-independent portion of this library.

Functions that are part of OpenStep’s system-dependent part of the Display PostScript Client Library are listed
here.

PostScript Execution Context Functions

Convert a DPSContext to an NSDPSContext Object
NSDPSContext *DPSContextObject(DPSContext ctxt)

Communication with the Display PostScript Server

Send a PostScript User Path to the Display PostScript Server

These functions are used to send a user path, plus one other action, to the Display PostScript Server. In the
...WithMatrix forms of these operators, the matrix operand is the optional matrix argument used by the ustroke,
inustroke, and ustrokepath operators. The matrix argument may be NULL, in which caseit isignored.

void PSDoUser Path(const void * coords, int numCoords, DPSNumberFormat numType,
const DPSUserPathOp * ops, int numOps, const void * bbox,
DPSUserPathAction action)

void PSDoUser PathWithM atrix(void * coords, int numCoords,

DPSNumberFormat numType, unsigned char * ops, int numOps,
void * bbox, DPSUserPathAction action, float matrix[6])

void DPSDoUser Path(DPSContext context, const void * coords, int numCoords,

DPSNumberFormat numType, const DPSUserPathOp * ops, int
numOps, const void * bbox, DPSUserPathA ction action)

3-8 Chapter 3: Display PostScript OpenStep Specification—10/19/94

void DPSDoUser PathWithMatrix(DPSContext context, void * coords, int numCoords,
DPSNumberFormat numType, unsigned char * ops, int numOps,
void * bbox, DPSUserPathAction action, float matrix[6])

Send PostScript Code to the Display PostScript Server

void PSFlush(void)
void PSWait(void)

OpenStep Specification—10/19/94 Client Library Functions 3-9

Single-Operator Functions

Single-operator functions provide aC languageinterface to theindividual operators of the PostScript language. The
specification for asingle-operator functionisidentical to that of the PostScript operator it represents. The PostScript
Language Reference Manual, Second Edition, by Adobe Systems Incorporated, provides the specifications of all
standard PostScript operators. Also refer to the Display PostScript System, Client Library Reference Manual, by
Adobe Systems Incorporated. Listed below are single-operator functions that correspond to operators found in
OpenStep but not in the standard implementation of the PostScript language.

Thesefunctionshave either a“PS’ or a“DPS” prefix. For every single-operator function with a“PS” prefix, there’'s
a corresponding single-operator function with a“DPS’ prefix. The PS and DPS functions are identical except that
DPS functions take an additional (first) argument that represents the PostScript execution context.

Besides using standard C language types, some single-operator functions use user object—an int that refersto the
value returned by DPSDefineUser Obj ect().

In the function descriptions below, x and y refer to the origin of source rectangles, and w and h refer to the width
and height of the source rectangles. gstateNum refers to the graphics state (gstate) of the source rectangle. dx and
dy refer to the origin of the destination for the compositing or dissolving operation. op refersto the specific
compositing operation. a or alpha refers to the coverage component used for compositing operations.

“PS” Prefix Functions

void PScomposite(float x, float y, float w, float h, int gstateNum, float dx, float dy, int op)
void PScompositerect(float x, float y, float w, float h, int op)

void PScurrentalpha(float * alpha)

void P<dissolve(float x, float y, float w, float h, int gstateNum, float dx, float dy, float delta)
void PSsetalpha(float a)

“DPS” Prefix Functions

void DPScomposite(DPSContext ctxt, float x, float y, float w, float h, int gstateNum, float dx,
float dy, int op)

void DPScompositerect(DPSContext ctxt, float dx, float dy, float w, float h, int op)
void DPScurrentalpha(DPSContext ctxt, float * pcoverage)

void DPSdissolve(DPSContext ctxt, float x, float y, float w, float h, int gstateNum, float dx, float
dy, float delta)

void DPSsetal pha(DPSContext ctxt, float a)

3-10 Chapter 3: Display PostScript OpenStep Specification—10/19/94

Types and Constants

The Display PostScript Client Library is composed of system-dependent and a system-independent parts. The
Display PostScript System, Client Library Reference Manual, by Adobe Systems, Incorporated, provides the
specification for the system-independent portion of this library.

The defined types, enumeration constants, and global variables that are part of OpenStep’s system-dependent part
of the Display PostScript Client Library are listed here.

Defined Types

Number Formats

typedef enum _DPSNumberFormat {

#ifdef _ BIG_ENDIAN__
dps float = 48,
dps long=0,
dps short =32
#else
dps float = 48+128,
dps long = 0+128,
dps_short = 32+128
#endif
} DPSNumber For mat;

Other permitted values are:
» For 32-hit fixed-point numbers, use dps_long plus the number of bitsin the fractional part.

» For 16-bit fixed-point numbers, use dps_short plus the number of bitsin the fractional part.

Backing Store Types

typedef enum _NSBackingStoreType {
NSBackingStoreRetained,
NSBackingStoreNonretained,
NSBackingStoreBuffered

} NSBackingStoreType;

OpenStep Specification—10/19/94 Types and Constants 3-11

Compositing Operations

typedef enum _NSCompositingOperation {
NSCompositeClear,
NSCompositeCopy,
NSCompositeSour ceOver,
NSCompositeSourceln,
NSCompositeSourceOut,
NSCompositeSour ceAtop,
NSCompositeDataOver,
NSCompositeDatal n,
NSCompositeDataOut,
NSCompositeDataAtop,
NSCompositeXOR,
NSCompositePlusDarker,
NSCompositeHighlight,
NSCompositePlusL ighter

} NSCompositingOper ation;

Window Ordering

typedef enum _NSWindowOrderingMode {
NSWindowAbove,
NSWindowBelow,
NSWindowOut

} NSWindowOrderingM ode;

User Path Operators
These constants define the operator numbers used to construct the operator array parameter of DPSDoUserPath.

typedef unsigned char DPSUser PathOp;
enum {

dps_setbbox,
dps_moveto,
dps_rmoveto,
dps lineto,
dps rlineto,
dps_curveto,
dps rcurveto,
dps arc,
dps arcn,
dps arct,
dps_closepath,

3-12 Chapter 3: Display PostScript OpenStep Specification—10/19/94

dps_ucache

1

User Path Actions

These constants define the action of a DPSDoUserPath. In addition to the actions defined here, any other system
name index may be used. See the PostScript Language Reference Manual, Second Edition, by Adobe Systems

Incorporated, for adetailed list of system name indexes.

typedef enum _DPSUserPathAction {
dps_uappend,
dps_ufill,
dps_uedfill,
dps_ustroke,
dps_ustrokepath,
dps_inufill,
dps inuedfill,
dps inustroke,
dps_def,
dps put

} DPSUser PathAction;

Enumerations

Special Values for Alpha

enum {
NSAlphaEqualToData,
NSAlphaAlwaysOne

1

User Object Representing the PostScript Null Object

enum {
DPSNullObject

1

OpenStep Specification—10/19/94

Types and Constants ~ 3-13

Symbolic Constants

Error Code Base

DPS_OPENSTEP_ERROR_BASE

Global Variables

Exception Names

3-14

NSString * DPSPostscriptError Exception;
NSString * DPSNameTooL ongException;
NSString * DPSResult TagCheck Exception;
NSString * DPSResult TypeCheck Exception;
NSString * DPSI nvalidContextException;
NSString * DPSSelectException;

NSString * DPSConnectionClosedException;
NSString * DPSReadException;

NSString * DPSWriteException;

NSString * DPSI nvalidFDEXxception;
NSString * DPSI nvalid T EException;
NSString * DPSI nvalidPor tException;
NSString * DPSOutOfM emor yException;
NSString * DPSCantConnectException;

Chapter 3: Display PostScript

OpenStep Specification—10/19/94

