
The Display PostScriptTMSystem

Display PostScript NX Software
Concepts and Facilities

Release 1.0

01 June 1993

Adobe Systems Incorporated

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Display PostScript NX Software Concepts and Facilities
Copyright 1992, 1993 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

Any references to a “PostScript printer”, a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs respectively that are written to support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems
Incorporated.

Adobe, PostScript, the PostScript logo, and Display PostScript are trademarks of Adobe Systems
Incorporated which may be registered in certain jurisdictions. OSF/Motif is a trademark of the Open
Software Foundation. UNIX is a registered trademark of AT&T Information Systems. X Window
System is a trademark of the Massachusetts Institute of Technology. SPARC is a registered name
trademark of SPARC International Inc. DEC ULTRIX, DECwindows, and DECnet are trademarks of
Digital Equipment Corporation. Other brand or product names are the trademarks or registered trade-
marks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

iii

Contents

1 About This Manual 1
Related Software 2
Related Reading 2
Typographical Conventions 3
Other Notation 3
Glossary 3

2 Overview of Display PostScript NX Software 5
How Display PostScript NX Software Works 5
Information Flow and Synchronization 7
Display PostScript Connection Policy 12
Selecting a Port 13
Lock-and-Key Authorization 13

3 Configuring the System 15
One Agent per Application 15
One Agent per Display 16
One Agent per Host 18

4 Configuring an Agent 20
Data Files 20
Command-Line Arguments 21

5 Starting an Agent 24
Starting an Agent Automatically 24
Starting an Agent with execnx 25

6 Configuring the Client Library 29
Environment Variables 29

7 Client Library Concepts 31
Handling Changes to the GC Clip 31
Handling Race Conditions 32
Handling Race Conditions Explicitly 33
ClientMessage Wire-to-Event Override 37
Special Considerations for Fonts 38

8 New Client Library Procedures 39

9 What Belongs In a Release 45
Required Components 45
Optional Example Programs 46
What Does Not Belong In a Release 46

iv Contents 01 June 1993

10 Modifying Your Application’s Installation Utility 48
An Example of an Installation Utility 48
Where to Install Files 48
How to Install Required Components 49
Using the Application Defaults File 49
Integrating with an Existing Display PostScript Environment 50

Appendix A Quick Start 52

Appendix B Colormap Usage 54

Appendix C How to Use the Pass-Through Information 56

Index

v

List of Tables

Table 1 Effects of synchronization and flushing 10
Table 2 Agent command-line arguments 21
Table 3 execnx command-line arguments 26
Table 4 dpsNXargs.h constants used with XDPSNXSetClientArg 41
Table 5 dpsNXargs.h constants used with XDPSNXSetAgentArg 43

vi List of Tables 01 June 1993

vii

List of Figures

Figure 1 Functional elements of Display PostScript NX software 6
Figure 2 Information flow in the Display PostScript extension 8
Figure 3 Information flow in Display PostScript NX software 10
Figure 4 One agent per application 15
Figure 5 One agent per display 16
Figure 6 One agent per host 18

viii List of Figures 01 June 1993

ix

List of Examples

Example 1 Configuring the agent with XDPSNXSetClientArg 25
Example 2 Code without synchronization 34
Example 3 Code with synchronization 35
Example 4 Limiting XDPSNX_REQUEST_BUFFER mode 36
Example 5 Flushing Display PostScript requests before handling X events 37
Example 6 Flushing Display PostScript requests when X requests return values 37
Example 7 Flushing Display PostScript requests for applications that block 37

x List of Examples 01 June 1993

1

Display PostScript NX
Software
Concepts and Facilities

1 About This Manual

This manual tells application programmers how to bundle the Display
PostScript NX software with an application program. The application can
then display on an X Window SystemTM platform that doesn’t contain the
Display PostScriptTM system extension to X. The sections of the manual are
listed below.

• Section 2, “Overview of Display PostScript NX Software,” introduces
Display PostScript NX software and the components necessary to make it
work.

• Section 3, “Configuring the System,” describes possible configurations for
running Display PostScript NX software on single or multiple hosts.

• Section 4, “Configuring an Agent,” describes how to use special data files
and command-line arguments to configure an agent.

• Section 5, “Starting an Agent,” describes how to start an agent
automatically or on the command line withexecnx.

• Section 6, “Configuring the Client Library,” describes how to use the
dpsNXargs.h arguments and special environment variables to configure
the Client Library.

• Section 7, “Client Library Concepts,” describes special programming
considerations that you must be aware of when incorporating Display
PostScript NX software into your application.

• Section 8, “New Client Library Procedures,” describes the Display
PostScript NX procedures and header files that have been added to the
Client Library.

• Section 9, “What Belongs In a Release,” lists the Display PostScript NX
components that you should include with your product release.

2 Display PostScript NX Software Concepts and Facilities 01 June 1993

• Section 10, “Modifying Your Application’s Installation Utility,” gives
advice on what to include in your installation utility to install your
application with Display PostScript NX software.

• Appendix A, “Quick Start,” shows how to load and run Display PostScript
NX software from a UNIX shell.

• Appendix B, “Colormap Usage,” describes how to modify your.Xdefaults
resource file to configure the use of the default X color map for Display
PostScript applications.

• Appendix C, “How to Use the Pass-Through Information,” highlights the
information that you should include in your end user documentation.

1.1 Related Software

The Display PostScript NX Software Developer’s Kit (SDK) lets a software
developer who already has access to a Display PostScript development
environment add Display PostScript NX capability to an application. If you
do not have a Display PostScript development environment, you can obtain
one by purchasing a Display PostScript SDK from Adobe.

1.2 Related Reading

An understanding of the standard Display PostScript extension to X is
recommended prior to reading this manual. Refer to the following manuals in
Programming the Display PostScript System with X (Addison-Wesley, 1993)
for information.

• Client Library Reference Manual

• Client Library Supplement for X

• Display PostScript Toolkit for X

• pswrap Reference Manual

1 About This Manual 3

1.3 Typographical Conventions

The following typographical conventions are used in this manual:

1.4 Other Notation

You should include some of the information in this manual in documentation
for users of your application. The particular sections that contain information
that you should include are indicated by the following icon. See Appendix C
for more information.

Some path names mentioned in this document assume the directory that the
files reside in can be described by the meta-variableRELEASE, with the
addition of your vendor-specific name (top-level directory of the release),
followed by the platform. For example, if Adobe System Incorporated’s
evaluation tape were installed on/user/adobe, the path would be:

RELEASE = /user/adobe/AdobeEvaluation-2/sparc

1.5 Glossary

The following terminology is used throughout this manual:

Item Example of Typographical Style

file or executable dpsclient.h

variable, typedef ctxt , DPSContextRec

code example typedef struct {

C procedure DPSSetContext

PostScript operator rectfill

new term “Awrapped procedure (wrap for short) consists of ...”

agent The Display PostScript NX program that contains the
PostScript interpreter. The agent has characteristics of
both an X server (for example, it can accept network
connections, process protocol requests, and multiplex
simultaneous access) and an X client (for example, it
sends drawing requests to an X server through Xlib).

Pass-Through
Information

4 Display PostScript NX Software Concepts and Facilities 01 June 1993

application, or
client

A program run by the end user, such as a paint
program or word processor. The application does not
need to run on the same machine as either the server or
agent.

advertisement Information placed by an agent on the X display’s root
window so potential clients can find the agent.

host A computer that executes the program whose output
appears on your display. A host is typically connected
to other machines by a high performance network,
such as EthernetTM. A host may be the workstation on
your desktop, a large mainframe elsewhere in the
building, or a supercomputer miles away. Hosts are
identified by a network address and a name.

server, or X
server

The part of the X Window System that provides the
basic windowing mechanism for applications.

synchronization Coordination between the application, the PostScript
interpreter, and the X server to guarantee that all three
are in a consistent state.

serialization Transforming unordered disparate X and Display
PostScript requests into a single stream of sequential
requests on a single connection.

2 Overview of Display PostScript NX Software 5

2 Overview of Display PostScript NX Software

This section provides an overview of Display PostScript NX software,
including:

• How Display PostScript NX software works.

• Comparison of how Display PostScript NX software and the Display
PostScript extension handle information flow and synchronization.

• Display PostScript connection policy used to determine if an agent should
be used, and if so, which agent to use.

• How a port is selected for an agent that is started automatically by the
Client Library.

• Requirements for a lock-and-key mechanism.

2.1 How Display PostScript NX Software Works

Display PostScript NX software is a host-based program that contains a
PostScript interpreter. Instead of being integrated with the X Window System
as in the Display PostScript extension to X, the interpreter communicates
with the X server in the same way an application does—by means of X
protocol. Because it does not depend on the presence of the Display
PostScript extension, Display PostScript NX software lets your Display
PostScript application display on any X server.

Design Features

The design features of Display PostScript NX software include the following.

• Transparent support of the Display PostScript Extension to X. Your
application can use a single universal application programmer interface
(API) that works, without additional programming, with systems that have
either the Display PostScript extension or Display PostScript NX
software.

• Flexibility in configuration and deployment. Display PostScript NX
software lets end users configure their network or file system in different
ways.

• A variety of choices for starting the agent program.Because an
application developer or end user may want to configure and deploy
Display PostScript NX software in different ways, multiple customizing
choices are provided.

6 Display PostScript NX Software Concepts and Facilities 01 June 1993

• Protection of developer’s investment.Display PostScript NX software
automatically implements a lock-and-key authorization system to
guarantee that the agent purchased by an application developer serves only
those applications that the developer specifies.

How the System Fits Together

The application sends PostScript language code to the agent, which executes
the code and converts it into X drawing primitives. These drawing primitives
are sent to the X server for rendering in the application window. The agent
does not download large bitmaps; it draws using rectangles, tiles, stipples,
colors, and fonts. The agent and application share the drawables and GCs
specified at context creation or in the PostScript language program.

Because the application, agent, and X server can operate across a network,
they may be distributed across different hosts or they may all run on the same
host. Figure 1 shows how the system fits together. Each element is described
below the figure.

Figure 1 Functional elements of Display PostScript NX software

• Application. The application must be linked with Xlib and with a version
of the Display PostScript Client Library that is capable of using Display
PostScript NX software.

• Display PostScript Client Library. The Display PostScript Client Library
handles request management, status management, and event management
for Display PostScript events. It also provides extensive support for
synchronization and handling requests to an agent.

Application

Xlib

Toolkits

X Server

Display
PostScript
NX Agent

Display
PostScript
Client
Library

2 Overview of Display PostScript NX Software 7

Note: At this time, only the Client Library included in this release is capable of
using Display PostScript NX software. In the future, other versions of the
Display PostScript Client Library (such as those shipped by vendors of the
Display PostScript extension) will support this software.

• Display PostScript NX Agent.The Display PostScript NX agent is a
separate process from the application. The agent contains the PostScript
interpreter. The agent can be started by a Display PostScript application,
another application, an end user, or a system administrator.

The agent maintains a connection with the X server that is separate from
the application’s connection to the X server. To guarantee that X server
resources are properly preserved, the agent makes a new connection to the
X server for each application that connects to the agent.

• X Server. The X server provides a network-transparent window system.
Applications communicate with the X server by using the X protocol. X
servers are implemented on a variety of hardware platforms, including
workstations, X terminals, and personal computers running X server
software.

2.2 Information Flow and Synchronization

This section describes the way the Display PostScript extension to X and
Display PostScript NX software handle information flow and
synchronization. You must understand both in order to create a program that
works with both.

Data Synchronization for the Display PostScript Extension to X

Figure 2 shows how information flows between an application and an X
server with the Display PostScript extension. The dotted arrows in the figure
indicate Display PostScript requests, replies, and events. The solid black
arrows in the figure indicate X requests, replies, and events.

8 Display PostScript NX Software Concepts and Facilities 01 June 1993

Figure 2 Information flow in the Display PostScript extension

X events and Display PostScript extension events are sent to the application
on the same connection. Display PostScript requests and X requests are
serialized and sent to the X server. If the request produces a reply, the X
server sends the reply data back to the application.

Serialization imposes certain constraints in the way Display PostScript
requests and X requests are processed. X requests are completed as soon as
they are processed. In contrast, PostScript language code can take an
unpredictable amount of time to complete. You must pay attention to these
constraints so you know when to add code to synchronize requests. For
example, if the PostScript interpreter renders a large scanned image into a
pixmap, you must make sure that it is finished rendering before the X server
copies the pixmap to a window. See Section 7.2 for more information on
synchronization.

X and Display PostScript extension events are received by the application on
the same connection. Output from a context, including text or data written to
the context’s output stream and return values from a wrap, is divided into
separate chunks. Each chunk is small enough to fit in an X extension event.
These events are sent back to the application, where they are assembled into a
continuous output stream by the Client Library.

Your application uses X GCs and drawables with the Display PostScript
system. The Client Library defines the GC values and drawable attributes that
are used by the Display PostScript system. SeeClient Library Supplement for
X for more information. Because the Client Library tracks changes to these X

DPS
X

X server with
Display PostScript

extension to X

Application

2 Overview of Display PostScript NX Software 9

resources for the Display PostScript extension, your application can use
normal Xlib procedures, such asXSetClipMask , to make changes to GCs and
drawables.

Data Synchronization for Display PostScript NX Software

While an application using the Display PostScript extension has only one
network connection (X server), an application using Display PostScript NX
software has two network connections (agent and X server) for each X server
display session. The Display PostScript NX application sends X requests to
the X server, and Display PostScript requests to the agent. To avoid the
complexity of managing asynchronous events on two separate network
connections, output from Display PostScript contexts is routed through the X
server by means ofXSendEvent. In this way, all asynchronous output,
whether from X or from the agent, appears on the application’s connection to
the X server as X events.

Output from the Display PostScript context is divided into small chunks and
sent asClientMessage events. The agent sends these events to the X server,
which in turn forwards them to the application through a private window
known to both the Client Library and the agent. The Client Library assembles
these events into a continuous output stream by overriding the low-level
wire-to-event converter and intercepting theClientMessage events before
they are queued in the normal event queue.

Figure 3 shows how information flows between an application, the X server,
and a Display PostScript NX agent. The dotted arrows in the figure indicate
Display PostScript requests, replies, and events. The solid black arrows in the
figure indicate X requests, replies, and events. The striped arrows in the
figure indicateClientMessage events.

10 Display PostScript NX Software Concepts and Facilities 01 June 1993

Figure 3 Information flow in Display PostScript NX software

As in the Display PostScript extension, your application uses X GCs and
drawables. For the most part, the Display PostScript Client Library
automatically tracks changes to these resources. However, special
consideration is necessary in cases where GC clips are created using
XClipRectangles or XSetRegion . See section 7.1, “Handling Changes to the
GC Clip,” for details.

Table 1 lists the Client Library and Xlib procedures you can use to handle
information flow and synchronization.

Table 1 Effects of synchronization and flushing

Procedure Function Display PostScript Extension
Side Effects

Display PostScript NX
Software
Side Effects

XFlush Guarantees that pending X
requests made by the application
are sent to the X server. The
application continues without
waiting for confirmation.

Flushes Display PostScript
requests.

None.

DPSFlushContext Guarantees that Display
PostScript requests made by the
application are sent to the
PostScript interpreter. The
application continues without
waiting for confirmation.

X requests are also flushed. X requests are also
flushed.

DPS
X

Agent

Application

X Server

ClientMessage

2 Overview of Display PostScript NX Software 11

When you synchronize requests for the Display PostScript extension, you can
use the Xlib proceduresXFlush andXSync to flush and synchronize X
requests. As you can see from Table 1, side effects cannot be relied upon, so
you must use the proceduresDPSFlushContext andDPSWaitContext . You
must decide which procedure is appropriate for your application; some hints
are given below.

UseXFlush or XSync (or requests that have replies) if you are trying to flush
or synchronize X requests and you do not care about the status of Display
PostScript requests. For example, you can useXFlush or XSync if:

• No Display PostScript requests are pending.

• Your application has just synchronized a Display PostScript request.

• Your application doesn’t care whether or not a Display PostScript request
is synchronized because it plans to synchronize requests later.

XNextEvent ,
XPending , or any
other Xlib calls
that implicitly
flush X requests.

Guarantees that pending X
requests made by the application
are sent to the X server. There are
several Xlib and Intrinsics
procedures for handling events
which implicitly flush X requests
before checking for events.
Consult your Xlib and Intrinsics
documentation to determine
which procedures implicitly flush
X requests.

Flushes Display PostScript
requests.

None.

XSync , or X
requests that
return values.

Guarantees that pending X
requests made by the application
are sent to and processed by the X
server. The application waits for
confirmation before continuing.

Forces Display PostScript
requests to be processed by
the X server. Any PostScript
language code contained in
the requests, or already
running in the interpreter, is
not guaranteed to execute to
completion.

None.

DPSWaitContext ,
or wraps that
return values.

Guarantees that pending Display
PostScript requests made by the
application are sent to and
processed by the PostScript
interpreter. The application waits
for the PostScript language code
to be executed.

Guarantees that pending X
requests made by the
application are sent to and
processed by the X server.

Guarantees that
pending X requests
made by the
application are sent to
and processed by the X
server.

Table 1 Effects of synchronization and flushing (Continued)

Procedure Function Display PostScript Extension
Side Effects

Display PostScript NX
Software
Side Effects

12 Display PostScript NX Software Concepts and Facilities 01 June 1993

UseDPSFlushContext or DPSWaitContext (or wraps that return values) if
your program requires flushing or completion of Display PostScript requests.
This includes callingDPSFlushContext before any Xlib or Intrinsics call
that processes events and implicitly flushes pending requests. See section 7.3,
“Handling Race Conditions Explicitly,” for more information.

2.3 Display PostScript Connection Policy

The Client Library follows a connection policy to determine whether an
agent should be used, and if so, which agent to use. The default policy,
described below, can be modified by the application developer or the end
user.

1. Use the Display PostScript extension, if it is available.

If an application tries to render on an X server that contains the Display
PostScript extension, the extension will be used even if there is an agent
available. You can force your application to connect to an agent
regardless of the existence of the Display PostScript extension by setting
the environment variableDPSNXOVER to the value “True”. This is not
normally desirable except during debugging. For more information on
DPSNXOVER, see section 6, “Configuring the Client Library.”

2. Connect to the agent specified by the application.

An application may explicitly request a particular agent by using the
XDPSNXSetClientArg procedure to set the argumentXDPSNX_AGENT
before creating a context. See section 8, “New Client Library Procedures,”
for further details.

3. Connect to the agent that the end user specified through theDPSNXHOST
environment variable.

An end user may specify an agent by setting the environment variable
DPSNXHOST. If the end user specifies an agent and the Client Library is
unable to establish a connection to it, context creation will fail. If
DPSNXHOST is not set, step 4 is attempted. For more information on
DPSNXHOST, see section 6, “Configuring the Client Library.”

4. Connect to an agent that is already servicing the X display.

When an agent begins servicing an application on a particular display, it
places an advertising property on the root window of that display so other
applications can find it. The Client Library looks for agents that are
advertising on the requested display. If the Client Library finds an
available agent, it attempts to connect to it.

Pass-Through
Information

2 Overview of Display PostScript NX Software 13

5. If automatic startup is specified, the Client Library starts an agent for the
current display and connects to it.

If the application has not set theXDPSNXSetClientArg argument
XDPSNX_AUTO_LAUNCH to True, an agent will not be started and
context creation will fail at this point. The Client Library attempts to start
a new agent by searching the user’s path for adpsnx.agent file and
invoking it. Applications may modify this default behavior by calling
XDPSNXSetClientArg to specify a different agent name, a full path, and
arguments to pass. See section 8, “New Client Library Procedures,” for
more details.

2.4 Selecting a Port

The following section describes how a port is selected for an agent that is
started automatically by the Client Library. System administrators may need
this information to change the default base port for TCP/IP transport. See
section 5 for details on starting an agent.

The Client Library tries to start an agent on the port that was specified by the
application when it calledXDPSNXSetClientArg . If the application has not
specified a port, the Client Library looks in the Internet services and aliases
database for the entry

dpsnx <port>/tcp

to determine whether there is a port assigned to it. Depending upon your
network or system configuration, this database may be either the file
/etc/services or an NIS database. port is the IP port number assigned as
Display PostScript NX software’s base listening port. Its value is the base
port in a range of ports that the Client Library and the agent expect to be
available for their use. The specified network protocol must be “tcp”. If the
application has specified a port, but that port is already in use, the agent will
not start. If there is no entry in the database, the Client Library tries to start an
agent using a default port, which is hard-coded.

2.5 Lock-and-Key Authorization

Display PostScript NX software provides a lock-and-key authorization
mechanism which guarantees that the agent you purchased serves only the
applications you specify. Agents are locked and will accept connections only
from applications that have an appropriate key. Your application doesn’t have
to do anything to take advantage of this feature.

For flexibility, keys are two-tiered. The primary tier is based on the
application vendor’s identification, usually the company name. This structure
allows any or all applications developed by a particular vendor to use the

Pass-Through
Information

14 Display PostScript NX Software Concepts and Facilities 01 June 1993

same agent. The secondary tier is a product number. This tier allows a vendor
to organize products by agent, should the vendor choose to distribute agents
with varying levels of functionality, or with varying configurations.

The default implementation uses the primary tier only. To enable the
secondary tier, the application vendor must contact Adobe Systems
Incorporated to obtain a reconfigured agent and Client Library.

The key is encoded in the Client Library. Any application linked with your
copy of the Client Library will have your key and will work with your locked
agent.

3 Configuring the System 15

3 Configuring the System

The following sections describe three possible configurations that you can
choose from when deciding how to run the agent and application:

• One agent and one application run on the same host; the agent drives one
display.

• Multiple applications and multiple agents run on one host; each agent
drives one display.

• Multiple applications and one agent run on one host; the agent drives
multiple displays.

3.1 One Agent per Application

Figure 4 shows the simplest configuration of an application, an agent and an
X server. In this figure and those that follow, the direct connection between
the application and the X server has been omitted for simplicity. See Figure 3
on page 10 for a complete diagram of the network relationship.

Figure 4 One agent per application

If Display PostScript NX software is set to automatically start an agent, the
application and the agent will run on the same host. Otherwise, the
application and the agent may run on different hosts. In either case, there is
only one agent for each different application. For example, a word processor
will use one agent and a spreadsheet will use a different agent. For multiple
instances of the same application, there is only one agent. For example, two
copies of the same word processor will use the same agent.

Host

X server

A

App 2

Display PostScript NX
Agent 2

App 1

Display PostScript NX
Agent 1

16 Display PostScript NX Software Concepts and Facilities 01 June 1993

3.2 One Agent per Display

Figure 5 illustrates a more complex configuration; this configuration has the
potential of multiple applications using multiple agents on a host.

Figure 5 One agent per display

Applications can run on the same host as agents, or on different hosts. If more
than one agent runs on a host, each agent has its own port number. The
number of ports that can be assigned on any given host is limited by the
operating system on which you are running. The number of displays, agents,
hosts, and applications shown in Figure 5 is only an example and is not meant
to be restrictive. You may have many more of these elements.

One agent per display has several advantages.

• It makes the task of finding an agent easy. The application, which has
already made a connection to the display that it wants to use, does nothing
further. Instead, the Client Library looks at the properties on the root
window of the display and finds a list of agents there. Only those agents
currently servicing the display are on the list. In the configuration shown

A

Display PostScript
NX Agent

6016

Display PostScript
NX Agent

6017

Display PostScript
NX Agent

6016

A A

App 1 App 2 App 3 App 4 App 5 App 6

Host A Host B

Display 1 Display 3Display 2

3 Configuring the System 17

in Figure 5, the list has exactly one agent. It doesn’t matter which host the
agent is on. The Client Library uses the advertising property list to make a
connection to the right agent on the right host.

• This configuration closely models the Display PostScript extension. With
the Display PostScript extension, there is only one PostScript interpreter
per display. Likewise, in this configuration there is only one PostScript
interpreter per display. This similarity has the best chance of yielding the
same results between the Display PostScript extension and Display
PostScript NX software.

• This configuration is robust. If an agent crashes, only one end user is
affected—the end user sitting in front of the display that the agent is
servicing. Again, this organization parallels the Display PostScript
extension organization. If the Display PostScript extension crashes, only
the end user at the workstation is affected.

The main disadvantage of this configuration is that it can consume more host
resources than other configurations. While most systems share executable
program images, the dynamic data, which for Display PostScript NX
software can be relatively large (working set of 1 to 2 megabytes), is not
shared. A host with adequate memory and virtual memory management
resources (paging and swapping space) should be able to handle an arbitrary
number of agents, but overall system performance may be impaired.

18 Display PostScript NX Software Concepts and Facilities 01 June 1993

3.3 One Agent per Host

Figure 6 illustrates another possible configuration. Applications may run
anywhere. The number of applications, displays, agents, and hosts is just an
example and is not meant to be restrictive, except that there is only one agent
on any given host. Each agent drives one or more displays.

Figure 6 One agent per host

The main advantage of this configuration is that it minimizes the use of host
resources. While the agent process itself may have a larger working set than
in other configurations, most systems can manage a single very large process
better than several large processes.

One agent per host has several disadvantages that correspond to the
advantages of one agent per display. As long as all applications using the
agent want to use the same display, the Client Library’s use of advertising
properties on the root window works. However, this default won’t work for
an application that wants to use a different display. The application must
explicitly tell the Client Library to use the same agent for a different display.
The application can override the default host or the end user can do this by
setting theDPSNXHOST environment variable.

A

Display PostScript
NX Agent

6016

A A A

Display PostScript
NX Agent

6016

App 4

Host A Host B

Display 1 Display 2 Display 3 Display 4

App 1 App 2 App 3

3 Configuring the System 19

One agent per host cannot emulate the Display PostScript extension
implementation as well as one agent per display. The main problem lies in the
shared VM of the PostScript interpreter. With the Display PostScript
extension, all applications displaying on a particular workstation can share
information in shared VM but applications displaying on other workstations
cannot. With one agent per host, applications showing on different displays
may (but should not) share information in shared VM. Applications should
avoid depending on this implementation inconsistency.

One agent per host is also not as robust as one agent per display. If the single
agent driving twenty displays crashes (or the host it is running on crashes), all
twenty end users are affected.

20 Display PostScript NX Software Concepts and Facilities 01 June 1993

4 Configuring an Agent

You can configure an agent through data files, by starting an agent with
command-line arguments, or by passing arguments indpsNXargs.h to the
Client Library procedureXDPSNXSetAgentArg . This section describes the
data files and the command-line arguments. See section 8, “New Client
Library Procedures,” for a description of the arguments that you can pass to
XDPSNXSetAgentArg.

4.1 Data Files

Three types of data files are provided so that you or an end user can configure
an agent: PostScript language resource files, the initial VM file, and font files.
You should install these data files in your application’s installation directory
and include the agent configuration in your application’s installation and
configuration process. See section 10 for information on installation.

PostScript Language Resource Files

The agent uses its own resource database, known as thePostScript language
resources,to locate files that describe and contain PostScript language
objects. These files may be Adobe Font Metric files (AFM files), font outline
files, PostScript language procedure sets, forms, patterns, encodings, or any
named PostScript language object. See Appendix A in Display PostScript
Toolkit for X for complete details about locating PostScript language
resources.

Two resource files, DPSNX.upr andDPSNXFonts.upr, must be included with
your application.DPSNX.upr can contain two resource classes:DPSNXVM
andDPSNXDebugLog.

• DPSNXVM specifies the location of the initial VM used by the PostScript
interpreter.DPSNXVM can be configured to have an absolute path or a
relative path, as determined by the installation choices made by you or the
end user. This resource is mandatory.

• DPSNXDebugLog provides resource definitions for the location of the
debug log generated by an agent. The contents of the debug file depends
on the debug option specified on the command line. If this class isn’t
specified, the debugging log information will go to the standard error
stream of the tty that the agent is started from. See Table 2 for a
description of the command-line options. This resource is optional.

DPSNXFonts.upr specifies the location of the font resources that are installed
with the agent. This file provides a central point from which to identify all the
fonts available to the application and the agent.

Pass-Through
Information

4 Configuring an Agent 21

Font Files

A number of fonts are included with Display PostScript NX software. Use
theDPSNXFonts.upr file to define the location in which you choose to install
these fonts. See section 10 for more information on installation.

Initial VM File

You must include thedpsnx.vm file with your application. This file contains
the initial VM for the PostScript interpreter. It must not be changed by the
end user and should have read-only attributes.

4.2 Command-Line Arguments

Table 2 lists the command-line arguments that you can use to configure the
agent. Another program, such asexecnx, usually starts the agent, so a user
does not enter arguments on the command line. Instead, the application
determines the agent configuration and constructs the command line
programmatically. Your application may present a user interface that lets the
end user specify command-line arguments for agent configuration. In the
examples in Table 2,execnxis used to pass command-line arguments to the
agent. Arguments specified after the – – indicator are passed to the agent
through the automatic startup facilities in the Client Library (see section 5.2,
“Starting an Agent with execnx”). Additional details about–linger and
–quantum are discussed on the pages that follow the table.

Table 2 Agent command-line arguments

Command Description

–debug n Sets the debugging report level. All debugging information is sent to a log
file, unless–nolog is specified. Then parameter, which should be in the range
[0-9], specifies the amount of information to be reported. The higher the
level, the more debugging information gets reported. Specifying 0 turns off
reporting, except for warnings about exceptional conditions. Specifying a
debug level greater than 6 generates large amounts of debugging data and is
not recommended for normal use. Specifying a debugging level of 2 monitors
basic connection and context creation activity. Level 0 is the default. For
example:

execnx – – dpsnx.agent –debug 2

–linger hh:mm Forces the agent to keep listening for new connections. Normally, the agent
exits when the last client disconnects. The hh:mm parameter indicates the
amount of time the agent should wait for a new client after the last client
disconnects. Thehh parameter indicates the number of hours, themm
parameter indicates the number of minutes. The hours can be a single digit or
omitted completely. The following example tells the agent to wait for 2 hours
and 35 minutes.

execnx – – dpsnx.agent –linger 2:35

22 Display PostScript NX Software Concepts and Facilities 01 June 1993

Controlling How Long an Agent Runs

Normally, an agent exits after the last application disconnects from it. If
another application wants to use an agent shortly after the agent quits, it will
have to start a new agent. You can make an agent stay active and wait for a
new connection after the last application disconnects by using the command
line argument–linger to specify how long an agent will wait for a connection.
See Table 2 for details.

Context Scheduling

An application sends PostScript language code to a PostScript execution
context to be executed. SeeClient Library Supplement for X for more
information. Normally, an execution context runs until it needs more input,
has output, or blocks for some reason. If none of these events occurred, a
context could theoretically run forever and prevent other contexts from
running. To prevent this from happening, each context is limited to a brief

–nolog Sends debug log information to the standard error stream instead of the
debug log file. For example:

execnx – – dpsnx.agent –debug 2 –nolog

–psres dir Specifies the default PostScript language resource directory for the agent.
This directory is the value of “::” in thePSRESOURCEPATH
environment variable, which can be specified by the user.See section 6 in
this manual and Appendix A inDisplay PostScript Toolkit for X for more
information. For example:

execnx – – dpsnx.agent –psres /usr/new/OurAppDir/DPS

–quantum n Sets the quantum, which is the number of operations a context is allowed to
execute before it is forced to give up control. Higher numbers yield better
context performance but poorer context scheduling; lower numbers have the
opposite effect. For example:

execnx – – dpsnx.agent –quantum 300

–stack n Increases the amount of stack space allocated to each context byn bytes. If
you are using a UNIX system with a modified kernel or your shell constrains
the amount of stack space a process can have, you may need to add stack
space to prevent the agent from crashing. For example:

execnx – – dpsnx.agent –stack 3000

–sync Turns on X synchronous mode in the agent for debugging. For example:

execnx – – dpsnx.agent –sync

Table 2 Agent command-line arguments (Continued)

Command Description

4 Configuring an Agent 23

execution period, ortimeslice. The timeslice is controlled by a quantum
number, which represents the maximum number of PostScript operators that
a context can execute before giving up control.

The overall performance of an agent is sensitive to the quantum number. By
default, the quantum number is set so that the performance is best when there
is only one application using an agent. As the number of applications using
an agent increases, the delay between one application’s execution context
being allowed to run and the next being allowed to run could become
noticeable. For example, an application may run quickly for a short time and
then freeze for a long time while other contexts are given a chance to run.

If several applications will routinely use an agent, consider experimenting
with the quantum number until you get acceptable performance.

If you set the quantum number too low, the overhead of context switching is
so great that performance suffers. If you set the quantum number too high,
the agent’s ability to respond to new connection requests and events is
hampered.

24 Display PostScript NX Software Concepts and Facilities 01 June 1993

5 Starting an Agent

An agent can be started automatically by an application or manually by using
the programexecnx. You can also start an agent by entering the executable
name of the agent on the command line. However, this method is not
recommended.

5.1 Starting an Agent Automatically

Your application can call theXDPSNXSetClientArg procedure to set the
XDPSNX_AUTO_LAUNCH argument (defined indpsNXargs.h). This
argument configures the Client Library to start an agent automatically if an
existing agent cannot be found. To take advantage of this feature, you must
include the following code in your application:

XDPSNXSetClientArg(XDPSNX_AUTO_LAUNCH, True);

Note: You must call XDPSNXSetClientArg before you create the first Display
PostScript context.

In addition to automatically starting an agent, your application may configure
an agent by setting the command-line arguments listed in Table 2.

WhenXDPSNX_AUTO_LAUNCH is set to true, the Client Library is
configured to automatically start an agent when needed. It will start an agent
the first time the application tries to create a Display PostScript context.

Example 1 shows the code necessary to start an agent automatically. The
agent’s quantum is specified with command-line arguments. The transport
and port are specified as well. Normally, the transport and port selection is
managed by the Client Library. This example shows you how to add code to
select the transport and port for exceptional cases.

5 Starting an Agent 25

Example 1 Configuring the agent with XDPSNXSetClientArg

{

char *quantum = “-quantum 300”

char *agentArgs[2];

DPSContext ctxt;

agentArgs[0] = quantum;

agentArgs[1] = NULL;

XDPSNXSetClientArg(XDPSNX_LAUNCHED_AGENT_TRANS,

XDPSNX_TRANS_TCP);

XDPSNXSetClientArg(XDPSNX_LAUNCHED_AGENT_PORT, 3400);

XDPSNXSetClientArg(XDPSNX_EXEC_ARGS, agentArgs);

XDPSNXSetClientArg(XDPSNX_AUTO_LAUNCH, True);

ctxt = XDPSCreateSimpleContext(dpy, w, gc, 0, height,

DPSDefaultTextBackstop, DPSDefaultErrorProc, NULL);

}

The name of the agent program isdpsnx.agent. When applications from
multiple vendors are installed on the same system, this naming convention
may cause a problem with lock-and-key authorization. For example, when
your application tries to finddpsnx.agent on the search path, it may find
another vendor’s version which will have the wrong lock for your
application’s key. You can solve this problem by specifying an absolute path
name in your code as follows.

XDPSNXSetClientArg(XDPSNX_EXEC_FILE,

“/usr/new/OurAppDir/dpsnx.agent”);

You can also rename the agent to something other thandpsnx.agent;
however, this approach is not recommended because some tools and
applications provided by Adobe will not be able to find the agent.

5.2 Starting an Agent with execnx

execnx can be used to start a Display PostScript NX software agent from the
command line.execnx lets you assign an agent to a specific display, ensures
that the Display PostScript system is available before starting an application,
and lets you configure an agent with any of its command-line arguments. To
manually start an agent, invoke theexecnx program from the command line.
An example of the syntax is given below:

execnx[–display display_name: num[.screen]] [–new]

[–port num] [–transport { tcp| unix| decnet}]
[– –[agent_name] agent_options]

Pass-Through
Information

26 Display PostScript NX Software Concepts and Facilities 01 June 1993

The command-line arguments forexecnx are listed in Table 3.

When execnx starts an agent, it also acts as the agent’s first client on the
specified display. As a result, the agent places an advertising property on the
given display and makes itself available to other applications.

By default, execnx will start an agent only for a display that is not already
being serviced by either the Display PostScript extension or an existing
agent. See “Starting Multiple Agents to Service a Single Display” on page 37
for an exception. If the X server for the targeted display contains the Display
PostScript extension,execnx notifies the user that the Display PostScript
extension is present. If the X server does not have the extension, but there is
an agent servicing it,execnx will connect to the agent. If the display has an
agent servicing it and the Display PostScript extension is present,execnx will
not connect to the agent. To forceexecnx to start an agent, the environment
variable DPSNXOVER must be set to “True”, and if an agent is present, the
–new option must be used.

Starting an Agent to Service a Particular X Display

Use the following command syntax to start an agent for a particular X
display.

execnx –display display_name: num[.screen]

Table 3 execnx command-line arguments

Command Description

–display display_name:num[.screen] Specifies the display for the agent to service.display_name refers to
the name of the X server.num refers to the display number on that
server..screen refers to the screen number on that display. If
–display is not specified, theDISPLAY environment variable is
used.

–new Overrides the default connection policy and starts a new agent. See
section 2.3, “Display PostScript Connection Policy” for more
information.

–port Defines the network port to be used as the listening port for
automatically started agents.

–transport Sets the transport value to “tcp”, “unix”, or “decnet” for
automatically started agents.

– –[agent_name] agent_options Specifies the file name of the agent executable and the command-
line arguments to be passed through to the agent.agent_name is
optional. See Table 2 for a complete list of the agent command-line
arguments.

5 Starting an Agent 27

execnx starts an agent to service the named display, assuming the host on
whichexecnx is being executed has access rights to the named display. See
the manual page forxhost(1) for more information. If theDISPLAY
environment variable is already set to the display, you can omit the–display
argument.

Starting Multiple Agents On a Single Host

The Display PostScript NX software requires a reserved set of TCP/IP ports
so that multiple agents can run on a single host. (See section 2.4 for more
information on selecting a TCP/IP port.) execnx automatically searches for an
open port in this range so that it can assign a port to an agent.

Starting Multiple Agents to Service a Single Display

Multiple agents may service one display; it doesn’t matter if the agents are all
on the same host or on different hosts on the network. However,execnx will
not start an agent to service the same display that another agent is already
servicing, unless the–new argument is specified. Use the following
command syntax to start an additional agent for a display.

execnx –display display_name: num[.screen] –new

This command line guarantees thatexecnx will start an agent for the named X
display even if another agent is servicing it.

Starting a Specific Agent

By default,execnx attempts to start the first executable nameddpsnx.agent
that it finds on the user’s search path. Multiple agents on the user’s path that
contain locks for different applications can lead to a problem becauseexecnx
will start the first agent that it finds, which may not be the agent for which
your application has an authorization key. To specify an agent, you need to
include the name of the agent on the command line. If you specify an agent
name without a complete file path, execnx will search the current search path
for that executable. The following command line guarantees thatexecnx will
start the agent inOurAppDir instead of any other agent executables that might
be on the user’s search path.

execnx – – /usr/new/OurAppDir/dpsnx.agent

Starting an Agent on a Specific Port

execnx uses the command-line arguments–port and–transport to start an
agent on a specific port.execnxwill only use the port specified; it will not use
the reserved set of TCP/IP ports described in section 4, “Configuring an
Agent.”

28 Display PostScript NX Software Concepts and Facilities 01 June 1993

execnx –port 4761 –transport unix –new

This command line will start a new agent that uses the UNIX domain port
4761. If the port is not available, the agent will fail to start.

Starting an Agent On a Different Host

execnx has no built-in functionality to remotely start agents. To start an agent
on a specific host you must either remotely log on to that host and start the
agent, or execute commands remotely on the host. For example, use thersh
command to runexecnx.

6 Configuring the Client Library 29

6 Configuring the Client Library

You can configure the Client Library by setting special environment
variables, or by using the procedureXDPSNXSetClientArg to set the
arguments described bydpsNXargs.h. See section 8, “New Client Library
Procedures,” for a complete discussion of thedpsNXargs.h arguments.

6.1 Environment Variables

This section describes the environment variables that you or an end user can
set to override the default Client Library settings.

DPSNXHOST

SettingDPSNXHOST overrides the default location of the agent host and port
that the Client Library will use to find an agent. Ifhostname is not set, the
Client Library attempts to connect to the agent on the specified port. Ifport
is zero, the Client Library attempts to connect to the agent on the default port.
The syntax is:

<hostname><port separator><port>

where

hostname is either a name (for example, jumbo) or a number (for
example, 131.30.0.212).

port separator should be “:” for TCP/IP and UNIX domain, or “::” for
DECnetTM.

port if hostname is a machine name,port specifies the IP port
on which the agent is listening. If hostname is “unix” or is
omitted,port specifies the suffix for the name of a UNIX
domain socket.

DPSNXOVER

Use this environment variable if you want to force your application to use the
Display PostScript NX software instead of the Display PostScript extension
(for example, if you are debugging your application with Display PostScript
NX software). This environment variable can be set to the string “True” or
the string “False”; the capitalization does not matter. WhenDPSNXOVER is
set to “True”, it instructs the Client Library to ignore the Display PostScript
extension and use Display PostScript NX software instead.

Pass-Through
Information

30 Display PostScript NX Software Concepts and Facilities 01 June 1993

PATH

This environment variable defines the current search path for executable
programs. The Client Library expects to find the agent program in the current
search path.

If you are distributing agent that contains a lock for your software, your
application may have to redefinePATH so that it includes the location of the
new agent first. However, a better way to do this is to get the exact location of
the agent executable from your application’s installation configuration data
and use theXDPSNXSetClientArg procedure as described in section 5.1,
“Starting an Agent Automatically,” and section 10.4, “Using the Application
Defaults File.”

PSRESOURCEPATH

The environment variablePSRESOURCEPATH defines the list of directories
that the agent and application will use to look for PostScript language
resource files.PSRESOURCEPATH consists of a list of directories separated
by colons. Two adjacent colons in the path represent the default directory. A
typical example is:

::/usr/new/OurAppDir/DPS

The sample path above instructs applications to first look in the default place,
then to search the directory/usr/new/OurAppDir/DPS.

Note: Applications should not redefine or assume a value for PSRESOURCEPATH.
This environment variable should be defined by the end user.

7 Client Library Concepts 31

7 Client Library Concepts

The Client Library provided with Display PostScript NX software has the
same API as the Client Library used with the Display PostScript extension to
X. In most cases, to enable your Display PostScript application to take
advantage of Display PostScript NX software, simply add code to configure
the Client Library and the agent, as discussed in sections 4 through 6. In a
small number of cases, additional programming may be required or
desirable:.

• If your application changes the GC clip withXClipRectangles or
XSetRegion , you must take special action to make your application work
correctly with Display PostScript NX software. See section 7.1.

• If the automatic race-condition handling provided by the Client Library
has a negative impact on the overall performance of your application, you
may want to handle race conditions explicitly. See section 7.2 for an
overview of race conditions and section 7.3 for advice on how to handle
race conditions explicitly.

• If your application overrides the wire-to-event converter for
ClientMessage events, you must take special action to make your override
work correctly. See section 7.4.

• If the default font settings have a negative impact on the performance of
your application, you may want to change the font settings. See section
7.5.

New procedures (XDPSSyncGCClip , XDPSNXSetClientArg ,
XDPSNXSetAgentArg , andXDPSReconcileRequests) have been added to
the Client Library to handle these cases; they are documented in section 8.

7.1 Handling Changes to the GC Clip

The Client Library ensures that any changes to the GC values associated with
a PostScript execution context are recognized by the context. However, GC
clips used with Display PostScript NX software require additional attention.
For more information on clipping and GC clipping in particular, see section
3.3 inClient Library Supplement for X.

The Client Library automatically handles GC clips by detecting changes in
Xlib’ s GC cache. Unfortunately, GC clips created by usingXClipRectangles
or XSetRegion bypass the GC cache and go directly to the server. The Client
Library has no way of automatically detecting these GC clips, so the
application must take explicit action to keep the clip up to date.

Call XDPSSyncGCClip immediately after a GC clip is set with
XClipRectangles or XSetRegion . This procedure ensures that any clip
information that has changed is recognized by both the agent and X server.

32 Display PostScript NX Software Concepts and Facilities 01 June 1993

You may also use this procedure after a clip mask is set.XDPSSyncGCClip
flushes the specified GC and callsXSync . Call XDPSSyncGCClip no matter
if you are using the Display PostScript extension or Display PostScript NX
software.

7.2 Handling Race Conditions

In a race condition, the order in which two asynchronous requests are
processed cannot be predicted; therefore the final outcome of the requests is
unknown. Because Display PostScript NX software relies on separate
network connections between the application, the agent, and the X server,
race conditions can occur unless X requests and Display PostScript requests
are synchronized. Two situations can cause race conditions to occur: Display
PostScript requests followed by X requests and X requests followed by
Display PostScript requests.

Display PostScript Requests Followed by X Requests

The first race condition happens when your application sends a Display
PostScript request followed by an X request. This condition can impact
applications running with either the Display PostScript extension or an agent.
For example, a program issues a Display PostScript request to draw into a
pixmap followed by an X request to copy the pixmap to a window on the
display. Because the amount of time required to execute the PostScript
language code is unknown, the X request may try to copy the image before
the PostScript interpreter has finished rendering.

To ensure that the image is rendered correctly, the PostScript language code
must be completed before the X request is processed. To accomplish this, use
DPSWaitContext or other synchronization techniques. See section 4.8,
“Synchronization,” inClient Library Supplement for X for more information.

X Requests Followed by Display PostScript Requests

The second race condition happens when your program sends an X request
followed by a Display PostScript request. This condition impacts only
applications running with Display PostScript NX software. For example, a
program sends an X request to create a pixmap followed by a Display
PostScript request to draw into the pixmap. Because the requests travel down
different connections, the Display PostScript request may be processed first
causing the agent to draw into a pixmap that doesn’t exist yet. Your
application must ensure that the X request completes first.

The Client Library is configured to provide this synchronization. Each
connection to the agent, which is identified by the X display handle for the X
server, is set to the mode specified by the constant

7 Client Library Concepts 33

XDPSNX_REQUEST_RECONCILE. This mode forces any X requests that
preceded a Display PostScript request to complete before the Display
PostScript request is processed.

By usingXDPSNX_REQUEST_RECONCILE as the default mode, programs
that were designed for the Display PostScript extension to X will work
without change with Display PostScript NX software. However, because the
Client Library does not know the nature of the X requests that preceded the
Display PostScript request, or even whether there were any X requests, this
method will perform less efficiently than an application that handles race
conditions explicitly.

7.3 Handling Race Conditions Explicitly

The Client Library supports three request synchronization modes for use with
Display PostScript NX software:XDPSNX_REQUEST_RECONCILE,
XDPSNX_REQUEST_XSYNC, and XDPSNX_REQUEST_BUFFER.
XDPSNX_REQUEST_RECONCILE andXDPSNX_REQUEST_XSYNC
buffer requests and handle race conditions implicitly.
XDPSNX_REQUEST_BUFFER only buffers requests, thus making it
possible to handle race conditions explicitly. This section describes each
mode, tells you why you might want to handle race conditions yourself, and
gives code examples that show how to handle race conditions.

• XDPSNX_REQUEST_RECONCILE is the default mode and is adequate
for most applications. This mode reconciles any outstanding X requests
before a Display PostScript request is processed and does not cause the
application to wait for confirmation. However, the PostScript execution
context is paused while the X requests are reconciled, so PostScript code
may take longer to execute.

• XDPSNX_REQUEST_XSYNC is provided for debugging or for situations
when you do not want to pause the execution context in the same manner
asXDPSNX_REQUEST_RECONCILE. This mode causes anXSync to be
executed each time a Display PostScript request is made;XSync causes
the application to wait until the X server confirms that all X requests have
been processed. Forcing the application to wait may have a negative
impact on performance.

• XDPSNX_REQUEST_BUFFER is provided for programmers who do not
want to rely on the implicit handling of race conditions provided by the
Client Library. For example, you would use this mode to improve the
performance of the program. X and Display PostScript requests are
buffered as they normally would be for the Display PostScript extension to
X. Synchronization calls and X request reconciliation must be done
explicitly at appropriate times, using the facilities discussed below.

34 Display PostScript NX Software Concepts and Facilities 01 June 1993

If you decide to useXDPSNX_REQUEST_BUFFER, your application must
handle all race conditions by doing explicit flushes and synchronization.
Inadequate race condition handling may cause your application to hang, to
render incompletely, or to lose information. You must ensure that X requests
that are followed by Display PostScript requests, as well as Display
PostScript requests that are followed by X requests, are handled properly.
The following subsections discuss specific guidelines that need to be
followed for synchronization; see “Examples of Implicit Flushing” on page
36 for guidelines on explicit flushing.

An Example of Handling Race Conditions Explicitly

To handle race conditions explicitly withXDPSNX_REQUEST_BUFFER,
you must locate the places in your code where Display PostScript requests
are made when the status of pending X requests is unknown. You must insert
a call toXDPSReconcileRequests before the Display PostScript request.
This task may not be as straightforward as it seems. For example, if you use a
Display PostScript widget, you may not know when the Display PostScript
requests are made. You must also handle all of the usual synchronization
situations that you need to do for the other modes. For example, if you have
X requests that depend upon the completion of PostScript code, you must
insert a synchronization call, such asDPSWaitContext , before executing the
X requests.

Example 2 shows an application before the proper synchronization code has
been added. Example 3 shows the same code with the synchronization
proceduresDPSWaitContext andXDPSReconcileRequests added to
handle race conditions. The additions are indicated with brackets. Example 3
resolves both types of race conditions.

Example 2 Code without synchronization

for (ln = big; ln > smal l; ln -= dsize)
{
dsize = (ln > 36.) ? ln * 0.1 : ((ln > 18.) ? 2. : 1);
PSmoveto(8., .5*ln);
PStransform(temp, 1.1*ln, &temp, &dy);
ScrollDemoCanvas(-(int)dy); /* Calls XCopyArea */
PSselectfont(fname, ln);
PSshow(text);
XCopyArea(XtDisplay(demoCanvas), gb.canvas,

XtWindow(demoCanvas), defaultGC, 0, gb.offset,
width, height, 0, 0);

}
ScrollDemoCanvas(50); /* Calls XCopyArea */
XCopyArea(XtDisplay(demoCanvas), gb.canvas,

XtWindow(demoCanvas), defaultGC, 0, gb.offset,
width, height, 0, 0);

PSselectfont(fname, big);

7 Client Library Concepts 35

Example 3 Code with synchronization

fo r (ln = big; ln > small; ln -= dsize)
{
dsize = (ln > 36.) ? ln * 0.1 : ((ln > 18.) ? 2. : 1);

/*
* You can’t tell if X requests have been made before
* this point, so call XDPSReconcileRequests to make
* sure that all X requests have finished.
*/

XDPSReconcileRequests(ctxt);
PSmoveto(8., .5*ln);
PStransform(temp, 1.1*ln, &temp, &dy);

/*
* Because PStransform returns at least one value,
* Display PostScript requests are synchronized.
*/

ScrollDemoCanvas(-(int)dy); /* Calls XCopyArea */

/*
* Because ScrollDemoCanvas called XCopyArea, X requests
* must be reconciled before doing Display
* PostScript requests.
*/

XDPSReconcileRequests(ctxt);
PSselectfont(fname, ln);
PSshow(text);

/*
* A Display PostScript request has been sent, and an
* X request is about to be sent, so code needs to be
* added to ensure that the Display PostScript request
* completes first.
*/

DPSWaitContext(ctxt);
XCopyArea(XtDisplay(demoCanvas), gb.canvas,

XtWindow(demoCanvas), defaultGC, 0, gb.offset,
width, height, 0, 0);

}
ScrollDemoCanvas(50); /* Calls XCopyArea */
XCopyArea(XtDisplay(demoCanvas), gb.canvas,

XtWindow(demoCanvas),defaultGC, 0, gb.offset,
width, height, 0, 0);

/*
* An X request just occurred, so call
* XDPSReconcileRequest to make sure that the X
* request completes.
*/

XDPSReconcileRequests(ctxt);
PSselectfont(fname, big);

36 Display PostScript NX Software Concepts and Facilities 01 June 1993

Limiting the Use of XDPSNX_REQUEST_BUFFER

Even by following the above techniques for synchronizing, it may not be
possible, in all cases, to insert synchronization calls (for example, in complex
callback procedure relationships when using Intrinsics-based toolkits). In
these situations, try limiting the use of theXDPSNX_REQUEST_BUFFER
mode to only those portions of your application where rendering performance
is critical. You may do this by synchronizing all Display PostScript requests,
and then changing the mode as shown in Example 4.

Example 4 Limiting XDPSNX_REQUEST_BUFFER mode

/* Upon entering a critical performance section */

DPSWaitContext(ctxt);

XDPSNXSetClientArg(XDPSNX_REQUEST_BUFFER, dpy);

....

/* Upon exiting the critical performance section */

DPSWaitContext(ctxt);

XDPSNXSetClientArg(XDPSNX_REQUEST_RECONCILE, dpy);

If you cannot getXDPSNX_REQUEST_BUFFER mode to work after trying
these techniques, use the defaultXDPSNX_REQUEST_RECONCILE mode,
as it always works.

Examples of Implicit Flushing

If you are usingXDPSNX_REQUEST_BUFFER and you have already
handled synchronization issues, you still need to handle flushing. You must
flush Display PostScript requests whenever Xlib flushes X requests. Flushing
requests is particularly important when using Intrinsics-based toolkits
because flushing and event handling happen in non-obvious ways in these
toolkits (see Table 1 for information on implicit flushing). To handle flushing,
you must insertDPSFlushContext before the Xlib procedures that implicitly
flush X requests. The following examples show the most common cases in
which you will need to handle flushing.

Flushing Display PostScript requests before handling X events.In some
cases, Xlib flushes X requests implicitly before handling events. Display
PostScript requests should be flushed before calling an event procedure, as
shown in Example 5.

7 Client Library Concepts 37

Example 5 Flushing Display PostScript requests before handling X events

DPSFlushContext(ctxt); /* flush before XPending call */

while (XPending(dpy)) {

DPSFlushContext(ctxt); /* f lush before XNextEvent call */

event = XNextEvent(dpy);

...

 }

Flushing Display PostScript requests when X requests return values. Display
PostScript requests should be flushed before calling an Xlib procedure whose
request returns a value, as shown in Example 6.

Example 6 Flushing Display PostScript requests when X requests return
values

DPSFlushContext(ctxt);

name = XGetAtomName(dpy, atom); /* flushes X requests */

Flushing Display PostScript requests before blocking. If your application
will block for any reason, flush Display PostScript requests, as shown in
Example 7.

Example 7 Flushing Display PostScript requests for applications that block

DPSFlushContext(ctxt);

c = getchar(); /*read character, may block until available*/

7.4 ClientMessage Wire-to-Event Override

You must be aware of the way the Client Library handles wire-to-event
procedures if your application uses them. The Client Library overrides the
defaultClientMessage wire-to-event converter in order to invisibly intercept
application messagesthat represent output from PostScript language contexts
sent by the agent. It is therefore important that you daisy-chain (that is, call
the old wire-to-event procedure if the new one is not interested in the event)
any override that your application uses. If you don’t properly daisy-chain the
override, information will be lost. AClientMessage that is not recognized as
a Display PostScript NX event is passed to the original wire-to-event
procedure.

38 Display PostScript NX Software Concepts and Facilities 01 June 1993

7.5 Special Considerations for Fonts

Because Adobe font characters are rasterized in the agent and must be sent as
bitmaps to the server before they can be rendered, the overhead per character
is greater than the same operation in the Display PostScript extension. You
can improve the performance, with certain costs to accuracy, by using special
font options that allow the use of X screen fonts. Most X servers are
optimized to display these fonts quickly. Display PostScript NX software can
use normal X11 protocol to open an X screen font and display characters
from it.

If you decide to increase the speed of display for small font sizes, you will
notice that characters and words will have inaccurate spacing:

• Text may lose its alignment if it is aligned on the right or justified.

• Adjacent characters may touch and occasionally overlap by a few pixels.

• Some characters intended to be adjacent may be spaced so far apart that
they will appear to belong to two separate words.

You can control the trade-off between speed and accuracy by using one of the
following methods.

• Changing all fonts.By default, the agent favors accuracy over speed. You
may change this option, relative to the connection between the application
and a given agent, by callingXDPSNXSetAgentArg to set
AGENT_ARG_SMALLFONTS to AGENT_SMALLFONTS_FAST. The
agent will try to use X screen fonts according to the settings in the font
dictionary.

• Changing on a font-by-font basis.By default, fonts are configured to
substitute a suitable screen font when there is a screen font available
whose size matches the size requested. You may turn this option off by
setting values in the font dictionary. SeePostScript Language Reference
Manual, Second Edition for further details. You must set
AGENT_ARG_SMALLFONTS to AGENT_SMALLFONTS_FAST to use
this method.

Note: The set of X screen fonts is relatively small but includes three typeface
families that are commonly used: Courier, Times-Roman, and Helvetica.
These fonts are available in sizes ranging from 8 to 24 points on most
systems.

8 New Client Library Procedures 39

8 New Client Library Procedures

Display PostScript NX software extends the Client Library by adding a
header file,dpsNXargs.h and four procedures in the existing header file,
dpsXclient.h. dpsXclient.h now includes the following procedures:

• XDPSSyncGCClip —synchronizes the clip in the Display PostScript
device with the clip in the X GC.

• XDPSNXSetClientArg —sets arguments that alter the behavior of the
Client Library.

• XDPSNXSetAgentArg —sets arguments that alter the behavior of an
agent.

• XDPSReconcileRequests —guarantees that X requests are processed by
the X server before subsequent Display PostScript requests are processed
by the agent.

Each procedure is described below.

Note: You do not need to test whether the Display PostScript NX software is
running before calling the procedures. It is safe to use these procedures with
the Display PostScript extension to X. For the extension, the procedures will
either do nothing or do a comparable operation.

XDPSSyncGCClip XDPSSyncGCClip(Display *dpy, GC gc)

Synchronizes the clip in the Display PostScript device with the clip in the X
GC. All applications should callXDPSSyncGCClip after calling either
XClipRectangles or XSetRegion to guarantee that the application will work
with Display PostScript NX software.

dpy TheDisplay handle that specifies the X server for the display.

gc The X graphics context whose clip changed.

XDPSNXSetClientArg XDPSNXSetClientArg(int arg, void *value)

Modifies the Client Library defaults specific to Display PostScript NX
software by changing arguments specified indpsNXargs.h. All of the values
that can be set byXDPSNXSetClientArg have defaults; see Table 4.

arg One of a defined set of constants documented indpsNXargs.h. See
Table 4.

value Defined asvoid *. If the value will fit in the size of avoid *, pass the
value itself. Otherwise pass the value as a pointer coerced to a
void *.

40 Display PostScript NX Software Concepts and Facilities 01 June 1993

XDPSNXSetAgentArg Status XDPSNXSetAgentArg(Display *dpy, int arg, void* value)

Sets arguments that alter the behavior of an agent associated with the X
server. It is assumed thatvalue is of the correct type.

dpy TheDisplay handle that specifies the X server that the application
displays on. TheDisplay handle is used to look up the connection to
the agent. The argument that you set affects only this connection.

arg One of a defined set of constants documented indpsNXargs.h. See
Table 4.

value Defined asvoid *. If the value will fit in the size of avoid *, pass
the value itself. Otherwise pass the value as a pointer coerced to a
void *.

XDPSReconcileRequests void XDPSReconcileRequests(DPSContext ctxt)

Guarantees that any X requests sent prior to the call are processed by the X
server before any Display PostScript requests made after the call are
processed by the agent. This procedure returns immediately. It does not cause
the application to wait.

ctxt The Display PostScript execution context that is to be used in a
Display PostScript request that follows.

Note: If you use the modeXDPSNX_REQUEST_XSYNC or the default mode
XDPSNX_REQUEST_RECONCILE, you do not need to call
XDPSReconcileRequests.

8
N

ew
 C

lie
nt

 L
ib

ra
ry

 P
ro

ce
du

re
s

 4
1

Ta
bl

e
4

d
p

sN
X

a
rg

s.
h

 c
o

n
st

a
n

ts
 u

se
d

 w
ith

 X
D

P
S

N
X

S
e

tC
lie

n
tA

rg

N
am

e
Ty

pe
D

ef
au

lt
V

al
ue

D
es

cr
ip

tio
n

X
D

P
S

N
X

_A
G

E
N

T
ch

ar
 *

N
U

L
L

T
hi

s
ar

gu
m

en
t s

pe
ci

fie
s

an
 a

ge
nt

 to
 c

on
ne

ct
 to

. A
pp

lic
at

io
ns

 c
an

 o
f

fe
r

en
d

us
er

s
th

e
ab

ili
ty

 to
 s

et
 th

is
 v

al
ue

. T
he

 fo
rm

at
 o

f t
hi

s
va

lu
e

is
:

[h
o

st
n

a
m

e
]:
[:
]p

o
rt

w
he

re
:

ho
st

na
m

e
is

 e
ith

er
 a

 n
am

e
(f

or
 e

xa
m

pl
e,

 ju
m

bo
)

or
 a

 n
um

be
r

(f
or

 e
xa

m
pl

e,
13

1.
30

.0
.2

12
).

If
ho

st
na

m
e

is
 a

 m
ac

hi
ne

 n
am

e,po
rt
 s

pe
ci

fie
s

th
e

IP
 p

or
t o

n
w

hi
ch

 th
e

ag
en

t i
s

lis
te

ni
ng

. I
fh

os
tn

am
e

is
 “

un
ix

”
or

 is
 o

m
itt

ed
,p

or
t s

pe
ci

fie
s

th
e

su
ffi

x
fo

r
th

e
na

m
e

of
 a

 U
N

IX
 d

om
ai

n
so

ck
et

. I
fpo
rt
 is

 z
er

o,
 th

e
de

fa
ul

t p
or

t i
s

us
ed

.

T
hi

s
ar

gu
m

en
t o

ve
rr

id
es

 th
e

en
vi

ro
nm

en
t v

ar
ia

bl
e

D
P

S
N

X
H

O
S

T.

X
D

P
S

N
X

_A
U

TO
_L

A
U

N
C

H
B

oo
l

F
a

ls
e

S
et

 th
is

 a
rg

um
en

t t
oTr

u
e

to
 h

av
e

th
e

C
lie

nt
 L

ib
ra

ry
 a

ut
om

at
ic

al
ly

 la
un

ch
 a

n
ag

en
t

if
on

e
ca

nn
ot

 b
e

fo
un

d.
 If

 th
e

ap
pl

ic
at

io
n

se
ts

X
D

P
S

N
X

_E
X

E
C

_F
IL

E
,

X
D

P
S

N
X

_E
X

E
C

_A
R

G
S

,X
D

P
S

N
X

_L
A

U
N

C
H

E
D

_A
G

E
N

T
_T

R
A

N
S

,a
nd

X
D

P
S

N
X

_L
A

U
N

C
H

E
D

_A
G

E
N

T
_P

O
R

T,
 th

os
e

va
lu

es
 w

ill
 b

e
us

ed
 to

 s
ta

rt
 a

n
ag

en
t.

X
D

P
S

N
X

_E
X

E
C

_A
R

G
S

ch
ar

 *
*

N
U

L
L

Le
ts

 a
pp

lic
at

io
ns

 s
pe

ci
fy

 c
om

m
an

d-
lin

e
ar

gu
m

en
ts

 to
 p

as
s

to
 a

n
ag

en
t t

ha
t i

s
au

to
m

at
ic

al
ly

 la
un

ch
ed

. T
he

 la
st

 p
oi

nt
er

 in
 th

e
ar

ra
y

sh
ou

ld
 b

e
N

U
L

L
to

 in
di

ca
te

th
e

en
d

of
 th

e
ar

gu
m

en
ts

.

N
o

te
:

T
ra

n
sp

o
rt

 a
n

d
 p

o
rt

 a
rg

u
m

e
n

ts
 s

h
o

u
ld

 b
e

 s
e

t
u

si
n

g
X

D
P

S
N

X
_

L
A

U
N

C
H

E
D

_
A

G
E

N
T

_
T

R
A

N
S

 a
n

dX
D

P
S

N
X

_
L

A
U

N
C

H
E

D
_

A
G

E
N

T
_

P
O

R
T

in
st

e
a

d
 o

f
th

ro
u

g
hX

D
P

S
N

X
_

E
X

E
C

_
A

R
G

S,
so

 t
h

a
t

th
e

 C
lie

n
t

L
ib

ra
ry

 w
ill

 k
n

o
w

h
o

w
 a

n
d

 w
h

e
re

 t
o

 c
o

n
n

e
ct

 t
o

 t
h

e
 la

u
n

ch
e

d
 a

g
e

n
t.

42
D

is
pl

ay
 P

os
tS

cr
ip

t N
X

 S
of

tw
ar

e
C

on
ce

pt
s

an
d

F
ac

ili
tie

s
01

 J
un

e1
99

3

X
D

P
S

N
X

_E
X

E
C

_F
IL

E
ch

ar
 *

“d
p

sn
x.

a
g

e
n

t”
Le

ts
 a

pp
lic

at
io

ns
 u

se
 a

n
ag

en
t t

ha
t i

s
in

st
al

le
d

in
 a

 s
pe

ci
fic

 d
ire

ct
or

y
. I

f y
ou

 b
un

dl
e

yo
ur

 a
pp

lic
at

io
n

w
ith

 D
is

pl
ay

 P
os

tS
cr

ip
t N

X
 s

of
tw

ar
e

us
in

g
th

e
lo

ck
-a

nd
-k

ey
lic

en
si

ng
 o

pt
io

n,
 y

ou
r

in
st

al
la

tio
n

pr
oc

ed
ur

e
m

us
t i

ns
ta

ll
th

e
m

at
ch

in
g

ag
en

t
ex

ec
ut

ab
le

 fi
le

. I
f y

ou
r

ap
pl

ic
at

io
n

au
to

m
at

ic
al

ly
 la

un
ch

es
 a

n
ag

en
t,

us
e

th
is

ar
gu

m
en

t t
o

po
in

t t
he

 C
lie

nt
 L

ib
ra

ry
 to

 th
e

pr
op

er
 e

xe
cu

ta
bl

e
fil

e
fo

r
th

e
ag

en
t.

X
D

P
S

N
X

_L
A

U
N

C
H

E
D

_A
G

E
N

T
_P

O
R

T
in

te
ge

r
sy

st
e

m
 s

p
e

ci
fic

Le
ts

 a
pp

lic
at

io
ns

 e
xp

lic
itl

y
se

t t
he

 p
or

t t
ha

t a
 n

ew
 a

ge
nt

 w
ill

 u
se

 a
s

its
 li

st
en

in
g

po
rt

. I
f t

he
 s

pe
ci

fie
d

po
rt

 is
 n

ot
 u

sa
bl

e,
 th

e
ag

en
t w

ill
 fa

il
to

 s
ta

rt
. I

f t
he

 p
or

t i
s

no
t

se
t,

th
e

ag
en

t w
ill

 a
tte

m
pt

 to
 u

se
 th

e
de

fa
ul

t p
or

t.

X
D

P
S

N
X

_L
A

U
N

C
H

E
D

_A
G

E
N

T
_T

R
A

N
S

in
te

ge
r

sy
st

e
m

 s
p

e
ci

fic
Le

ts
 a

pp
lic

at
io

ns
 s

et
 th

e
tr

an
sp

or
t p

ro
to

co
l t

ha
t a

 n
ew

, a
ut

om
at

ic
al

ly
 la

un
ch

ed
ag

en
t i

s
to

 u
se

. I
f i

t i
s

no
t s

et
, t

he
 C

lie
nt

 L
ib

ra
ry

 w
ill

 u
se

 th
e

m
os

t e
ffi

ci
en

t
tr

an
sp

or
t.

T
he

 v
al

ue
 s

ho
ul

d
be

 s
el

ec
te

d
fr

om
 th

e
tr

an
sp

or
t v

al
ue

 c
on

st
an

ts
X

D
P

S
N

X
_T

R
A

N
S

_U
N

IX
,X

D
P

S
N

X
_T

R
A

N
S

_T
C

P,
or

X
D

P
S

N
X

_T
R

A
N

S
_D

E
C

N
E

T.

X
D

P
S

N
X

_R
E

Q
U

E
S

T
_B

U
F

F
E

R
D

is
pl

ay
 *

N
U

L
L

C
on

fig
ur

es
 th

e
C

lie
nt

 L
ib

ra
ry

 s
o

th
at

 w
he

n
a

D
is

pl
ay

 P
os

tS
cr

ip
t r

eq
ue

st
 is

 m
ad

e,
 it

is
 b

uf
fe

re
d

as
 it

 is
 fo

r
th

e
ex

te
ns

io
n.

 S
ee

 s
ec

tio
n

7.
3

fo
r

fu
ll

de
ta

ils
. T

hi
s

op
tio

n
gi

ve
s

th
e

C
lie

nt
 L

ib
ra

ry
 th

e
be

st
 p

os
si

bl
e

pe
rf

or
m

an
ce

. U
se

 th
is

 o
pt

io
n

on
ly

 if
 y

ou
ha

nd
le

 r
ac

e
co

nd
iti

on
s

ex
pl

ic
itl

y
in

 y
ou

r
ap

pl
ic

at
io

n
co

de
.

X
D

P
S

N
X

_R
E

Q
U

E
S

T
_R

E
C

O
N

C
IL

E
D

is
pl

ay
 *

N
U

L
L

C
on

fig
ur

es
 th

e
C

lie
nt

 L
ib

ra
ry

 s
o

th
at

 w
he

n
a

D
is

pl
ay

 P
os

tS
cr

ip
t r

eq
ue

st
 is

 m
ad

e,
bu

ffe
re

d
X

 r
eq

ue
st

s
ar

e
pr

oc
es

se
d

by
 th

e
X

 s
er

ve
r

be
fo

re
 a

 D
is

pl
ay

 P
os

tS
cr

ip
t

re
qu

es
t i

s
pr

oc
es

se
d

by
 th

e
ag

en
t.

T
hi

s
is

 th
e

C
lie

nt
 L

ib
ra

ry
 d

ef
au

lt
m

od
e.

 S
ee

se
ct

io
n

7.

X
D

P
S

N
X

_R
E

Q
U

E
S

T
_X

S
Y

N
C

D
is

pl
ay

 *
N

U
L

L
C

on
fig

ur
es

 th
e

C
lie

nt
 L

ib
ra

ry
 s

o
th

at
 w

he
n

a
D

is
pl

ay
 P

os
tS

cr
ip

t r
eq

ue
st

 is
 m

ad
e,

 it
ca

lls
X

S
yn

c
 o

n
th

e
sp

ec
ifi

ed
 d

is
pl

ay
 b

ef
or

e
se

nd
in

g
th

e
D

is
pl

ay
 P

os
tS

cr
ip

t
re

qu
es

ts
.X

S
yn

c
 g

ua
ra

nt
ee

s
th

at
 b

uf
fe

re
d

X
 r

eq
ue

st
s

w
ill

 b
e

pr
oc

es
se

d
by

 th
e

se
rv

er
 b

ef
or

e
th

e
D

is
pl

ay
 P

os
tS

cr
ip

t r
eq

ue
st

 is
 s

en
t t

o
th

e
ag

en
t.

S
ee

 s
ec

tio
n

7.

Ta
bl

e
4

d
p

sN
X

a
rg

s.
h

 c
o

n
st

a
n

ts
 u

se
d

 w
ith

 X
D

P
S

N
X

S
e

tC
lie

n
tA

rg
 (

C
o

n
tin

u
e

d
)

N
am

e
Ty

pe
D

ef
au

lt
V

al
ue

D
es

cr
ip

tio
n

8
N

ew
 C

lie
nt

 L
ib

ra
ry

 P
ro

ce
du

re
s

 4
3

Ta
bl

e
5

d
p

sN
X

a
rg

s.
h

 c
o

n
st

a
n

ts
 u

se
d

 w
ith

 X
D

P
S

N
X

S
e

tA
g

e
n

tA
rg

N
am

e
Ty

pe
D

ef
au

lt
V

al
ue

D
es

cr
ip

tio
n

A
G

E
N

T
_A

R
G

_S
M

A
LL

F
O

N
T

S
in

t
A

G
E

N
T

_
S

M
A

L
L

F
O

N
T

S
_

A
C

C
U

R
A

T
E

C
on

fig
ur

es
 th

e
ag

en
t s

o
th

at
 fo

nt
s

w
ith

 s
m

al
l s

iz
es

 (
8-

24
 p

oi
nt

s)
 a

re
 s

ho
w

n
w

ith
ac

cu
ra

te
 s

pa
ci

ng
 a

t t
he

 c
os

t o
f s

lo
w

 p
er

fo
rm

an
ce

 b
y

us
in

g
A

G
E

N
T

_S
M

A
LL

F
O

N
T

S
_A

C
C

U
R

AT
E

, o
r

as
 fa

st
 a

s
po

ss
ib

le
 w

ith
 p

ot
en

tia
lly

in
ac

cu
ra

te
 s

pa
ci

ng
 b

y
us

in
gA
G

E
N

T
_S

M
A

LL
F

O
N

T
S

_F
A

S
T

. E
ve

n
if

A
G

E
N

T
_S

M
A

LL
F

O
N

T
S

_F
A

S
T

 is
 u

se
d,

 th
e

ag
en

t m
ay

 n
ot

 b
e

ab
le

 to
 s

at
is

fy
 th

is
re

qu
es

t i
f s

ui
ta

bl
e

sc
re

en
 fo

nt
s

ca
nn

ot
 b

e
fo

un
d.

 T
he

 d
ef

au
lt

is
A

G
E

N
T

_S
M

A
LL

F
O

N
T

S
_A

C
C

U
R

AT
E

.

A
G

E
N

T
_A

R
G

_P
IX

M
E

M
in

t
A

G
E

N
T

_
P

IX
M

E
M

_
L

IM
IT

E
D

In
fo

rm
s

th
e

ag
en

t a
bo

ut
 th

e
av

ai
la

bi
lit

y
of

 p
ix

m
ap

 s
to

ra
ge

 o
n

th
e

X
se

rv
er

. I
f t

he
re

 is
 u

nl
im

ite
d

m
em

or
y

(f
or

 e
xa

m
pl

e,
 th

e
X

 s
er

ve
r

ha
s

vi
rt

ua
l m

em
or

y)
, t

he
 a

pp
lic

at
io

n
ca

n
sp

ec
ify A
G

E
N

T
_P

IX
M

E
M

_U
N

LI
M

IT
E

D
to

 im
pr

ov
e

pe
rf

or
m

an
ce

. I
f m

em
or

y
is

 li
m

ite
d,

 th
e

ap
pl

ic
at

io
n

sh
ou

ld
sp

ec
ify

A
G

E
N

T
_P

IX
M

E
M

_L
IM

IT
E

D
 to

 m
in

im
iz

e
th

e
ag

en
t’s

 u
se

 o
f p

ix
m

ap
s.

 If
th

e
X

 s
er

ve
r

do
es

 n
ot

 h
av

e
lim

ite
d

m
em

or
y,

 b
ut

 it
 d

oe
s

no
t h

av
e

lim
itl

es
s

m
em

or
y,

 th
e

ap
pl

ic
at

io
n

ca
n

us
e

A
G

E
N

T
_P

IX
M

E
M

_M
O

D
E

R
AT

E
.

44
D

is
pl

ay
 P

os
tS

cr
ip

t N
X

 S
of

tw
ar

e
C

on
ce

pt
s

an
d

F
ac

ili
tie

s
01

 J
un

e1
99

3

9 What Belongs In a Release 55

9 What Belongs In a Release

You must include certain components in your product release in order to
distribute and use Display PostScript NX software correctly. You must also
omit some components in Release 1.0 from your product release, because
you may not be licensed to distribute these components.

9.1 Required Components

You must include the following components in your release.

 Required Data Files

• dpsnx.vm

• Type 1 fonts and associated AFM files

Courier

Courier-Bold

Courier-BoldOblique

Courier-Oblique

Helvetica

Helvetica-Bold

Helvetica-BoldOblique

Helvetica-Oblique

Symbol

Times-Bold

Times-BoldItalic

Times-Italic

Times-Roman

Utopia-Regular

Utopia-Italic

Utopia-Bold

Utopia-BoldItalic

56 Display PostScript NX Software Concepts and Facilities 01 June 1993

Required PostScript Language Resource Files

• DPSNX.upr

• DPSNXFonts.upr

Required Pass-Through End User Documents

• man pages:dpsnx.agent (1), execnx (1), listnx (1)

Required Executables

• dpsnx.agent

• listnx

• execnx

9.2 Optional Example Programs

If your product is aimed at software developers, it may be useful to include
the optional example programs provided in this release in either source or
executable form with your product. These examples show code changes
specific to the Display PostScript NX software.

9.3 What Does Not Belong In a Release

Adobe prohibits redistribution of the following files or directories that are
inappropriate or that contain licensed or proprietary items.

Prohibited Documentation

Display PostScript NX Software Concepts and Facilities is targeted towards
the application developer who has licensed Display PostScript NX from
Adobe. The information included in this manual is inappropriate for the end
user.

Prohibited Executables

• dpsnx.debug

9 What Belongs In a Release 57

Prohibited Development Files

• RELEASE/include/*.h

• RELEASE/lib/*.a

• source.me

58 Display PostScript NX Software Concepts and Facilities 01 June 1993

10 Modifying Your Application’s Installation Utility

This section gives advice on how to modify your application’s installation
utility. The installation utility that is used to install your application should
also install the agent and the data files that it needs. The goal is to make
installation of Display PostScript NX software as easy as possible for the end
user.

Sections 10.1 through 10.4 discuss installation issues particular to platforms
that do not have a previously installed Display PostScript development
environment; section 10.5 discusses installation issues particular to platforms
that have an installed Display PostScript environment.

10.1 An Example of an Installation Utility

SeeRELEASE/build/motifdemos/dpsclock for an example of how an
application can use the methods discussed in this section. Examine the
following two files in the directory:

• install.dpsclock is a C shell script that configures and installs the
application and agent as described below.

• dpsclock.c demonstrates how an application reads application defaults and
uses them to configure the Client Library and an agent.

10.2 Where to Install Files

In general, an installation utility needs to know where to place the
application,dpsnx.agent, and PostScript resource files.

Where to Install the Application

In the methods described for installing Display PostScript NX software, the
installation utility should know where the application is installed and whether
the location is supplied by the end user or by default. The installation utility
uses this information to install the agent.

Where to Install the Agent

It is up to you to make sure that thedpsnx.agent file is properly installed by
your utility. You do not need to provide the end user a choice of where to
locate the agent. Instead, your utility can put it in the same place on every
system. However, to allow your end users greater control over the installation
process, you may give them the option of specifying the desired directory.
Your utility may suggest a default location. You can install the agent in the
same directory as the application. Alternatively, Adobe recommends
/usr/bin/X11 as the suggested default.

10 Modifying Your Application’s Installation Utility 59

The Client Library needs to know the location of thedpsnx.agent file to
automatically start an agent. The recommended way to supply the location is
to pass its absolute path name as theXDPSNX_EXEC_FILE argument with
XDPSNXSetClientArg . See section 10.4.

Where to Install PostScript Language Resource Files

The agent cannot run if it cannot locate the PostScript Language resource
files. Your installation utility should obtain the resource file location during
installation and configure the application so that it can pass this location to
the agent at run time. The application should use the–psres argument to pass
the absolute path name of the directory containing the resource file by calling
XDPSNXSetClientArg to set theXDPSNX_EXEC_ARGS argument. See
section 4 for more information on these resource files and command-line
arguments.

10.3 How to Install Required Components

Your installation must install all required components, includingdpsnx.agent
and all required PostScript language resource files (dpsnx.vm, DPSNX.upr
DPSNXFonts.upr, outline font files, and so on). See section 9 for a detailed
list of the required components.

The PostScript language resource files are contained in a single directory in
the Display PostScript NX release (RELEASE/lib/DPS). This entire directory
should be copied during installation unless one or more of the following
exceptions is true.

• The platform that you are installing on requires PostScript language
resource files (particularly fonts) to be installed in predefined places.

• Your application is knowledgeable about PostScript language resources so
that your installation utility can selectively install resources.

• You have developed an alternative strategy for integrating PostScript
language resources from various sources.

10.4 Using the Application Defaults File

There are several ways to configure your application so that it can find the
agent and the PostScript resource files. The easiest method is to add two
general X resource names to the application defaults file:dpsnxAgentExec
anddpsnxPSResDir. There is no support for accessing these resources in the
Client Library, but the exampledpsclock.c provides sample code. Adobe
recommends that these resources be used and named as indicated below.

60 Display PostScript NX Software Concepts and Facilities 01 June 1993

dpsnxAgentExec is a string that specifies the absolute path name of the agent.
Your installation utility should insert this entry into the application defaults
file during installation. For example, if the user specifies that the agent should
be installed in/usr/bin/X11, the installation utility should append this line to
the application defaults file:

*dpsnxAgentExec: /usr/bin/X11/dpsnx.agent

dpsnxPSResDir is a string that defines the absolute path name to the default
PostScript language resource directory. This value is passed to the agent with
the–psres argument. For example, if the user specifies that the PostScript
language resource directory should be installed in/usr/lib/X11, the
installation utility should append the following line to the application defaults
file:

*dpsnxPSResDir: /usr/lib/X11/DPS

The PostScript language resource files are all located inRELEASE/lib/DPS.
Your installation utility should copy the entire directory; the name of the
directory should remainDPS. For example, if the PostScript language
resource files are to be installed as specified by thedpsnxPSResDir string
above, after installation is complete, the files would be found in

/usr/lib/X11/DPS

10.5 Integrating with an Existing Display PostScript Environment

The advice given so far applies to platforms that do not have a preinstalled
installed Display PostScript environment. However, it is also possible to
install the Display PostScript NX software on a platform that has a
preinstalled Display PostScript environment. Two strategies can be used:
ignore the existence of the preinstalled environment, or merge the resource
files with the preinstalled files.

The first strategy, which is the easier, ignores the existence of the preinstalled
environment and installs Display PostScript NX software independently. If
you use this strategy, you must select installation directories that do not
conflict with or overwrite the preinstalled system. For example, on DEC
ULTRIX TM, do not install the Display PostScript NX PostScript language
resource files in/usr/lib/DPS, where the DECwindowsTM PostScript language
resources are stored. To avoid this problem, design your installation so that
all of your application files are located in one directory, for example,
/usr/new/OurAppDir. Install Display PostScript NX software in
subdirectories of that directory, for example,/usr/new/OurAppDir/DPS.

The second strategy involves merging PostScript language resource files
from the Display PostScript NX release with the preinstalled files. If the
preinstalled system uses the PostScript language resources mechanism, it is

10 Modifying Your Application’s Installation Utility 61

possible to merge the font files in the Display PostScript NX release with
those already on the system by making new entries in the.upr files. See
Appendix A and Appendix B inDisplay PostScript Toolkit for X for further
details.

If the previously installed system is not based on the PostScript language
resources mechanism (for example, early versions of the Display PostScript
system on workstations), use the first strategy and install Display PostScript
NX software independently.

62 Display PostScript NX Software Concepts and Facilities 01 June 1993

 Appendix A Quick Start

The procedure in Table A.1 shows you how to load and quickly start Display
PostScript NX software from this release, so you can see if everything works.
You need a host to run Display PostScript NX software and an X server to
display. After completing the procedure and trying out some of the programs,
read the Release Notes to guide you through the rest of the release.

Follow the steps shown in Table A.1.

Table A.1 Starting Display PostScript NX software

Step Action

1 Install the release tape by entering thetar command at the UNIX prompt. (Don’t
type the %, of course). For example:

% tar -xvf /dev/nrst8

Your device name may be different from nrst8. See the UNIX manual page
tar(1) for more information on extracting files.

2 Create a new xterm by entering the following at the UNIX prompt in an
available xterm:

 % xterm –sb –rw &

This xterm will be used to run the Display PostScript NX agent.

3 Login to the host machine on the xterm:

% rlogin <machine_name>

4 If you are not running the C shell, at the UNIX prompt, enter:

$ csh

5 Set theDISPLAY environment variable to the display name:

setenv DISPLAY <hostname>:0

You may useunix:0 or localhost:0 or :0.

6 Change to the directory of the release (in this example,AdobeEvaluation-2) and
then change to the platform directory (in this example,sparc):

% cd AdobeEvaluation-2/sparc

7 Source thesource.me file.

% source source.me

Appendix A Quick Start 63

If the output shown in step 8 does not appear, take the following actions in
the order shown:

1. Review the steps to be sure you’ve followed them accurately.

2. Try doing the steps again from the beginning.

3. Be sure your host has “permission” to display on your X server. See the
xhost(1) manual page for more information.

If you’re still unable to start the Display PostScript NX software, describe the
problem as fully as possible in an e-mail message to Display PostScript
Support at Adobe Systems:

dps-support@adobe.com

Your message should include any error messages you received.

8 Use theexecnx program to start a Display PostScript NX software agent with the
following arguments:

% execnx – – –nolog –debug 2

These command-line arguments select an optimized version of the agent
(dpsnx.agent) with file logging turned off and sets the debugging level to 2. The
following output is an example of what will be printed to the xterm:

%% DPS Client Library Warning:
*** FORCING DPS NX ***
%% DPS Client Library Warning:
Auto-launching DPS NX agent.
!0S: STARTING [Thu Apr 8 15:01:33 1993].
!2S: Started on port 6016.
!2H: New connection = 5 is TCP
!2H: Completing connection handshake for client ci:1,cu:1 ...
!2D: XOpenDisplay(xisbest:0.0) ... done, fd:6.
!2U: Put up advertisement on dpy "xisbest:0.0". id = 0x2c00001
!2H: ... handshake completed. REPLY SENT.
!2P: RHCreateContext(ci:1,cu:1)
DPS NX agent successfully started with pid: 18212.
This program will block now.
Put it in the background to maintain the auto-launched agent

9 Repeat steps 2-7 to create a second xterm window. You will use this xterm to run
the applications.

10 To exit Display PostScript NX software, quit all Display PostScript applications and
interrupt or kill theexecnx process.

Table A.1 Starting Display PostScript NX software (Continued)

Step Action

Appendix B Colormap Usage 64

 Appendix B Colormap Usage

This section provides information that is similar to the colormap usage
information presented inClient Library Supplement for X except that this
information is intended for end users instead of developers. An end user can
use this information to customize the way the Client Library uses the
colormap. Read section 3.2.1 inClient Library Supplement for X for
considerations important to a developer.

This appendix describes how to modify your.Xdefaults resource file to
configure the use of the default X colormap for Display PostScript
applications.

The Client Library checks theRGB_DEFAULT_MAP andRGB_GRAY_MAP
properties on the root window of the display. If these properties have already
been defined, the Client Library uses these for its colormap allocations. If
these properties have not been defined, the Client Library will define them,
using defaults appropriate for the default visual type. You can customize
these defaults by modifying the resources in your.Xdefaults resource file.
Each resource entry should be of the form:

DPSColorCube.visualType.depth.color: size

where

visualType is one of GrayScale, PseudoColor, or DirectColor.

depth is 1, 2, 4, 8, 12, or 24 and should be the largest depth equal to
or less than the default depth.

color is one of the strings “reds”, “greens”, “blues”, or “grays”.

size is the number of values to allocate of that color.

These resources are not used for the static visual types StaticGray,
StaticColor, or TrueColor. Specifying 0 for reds directs the Client Library to
use only a gray ramp. This specification is particularly useful for gray-scale
systems that incorrectly have PseudoColor as the default visual. Giving the
Display PostScript system more colormap entries improves the quality of its
rendering, but leaves fewer entries available to other applications since the
default colormap is shared.

For example, to configure a 5x5x4 color cube and a 17-element gray ramp for
an 8-bit PseudoColor screen, specify these resources:

DPSColorCube.PseudoColor.8.reds: 5

DPSColorCube.PseudoColor.8.greens: 5

DPSColorCube.PseudoColor.8.blues: 4

DPSColorCube.PseudoColor.8.grays: 17

10 Modifying Your Application’s Installation Utility 65

These resources use 117 colormap entries, 100 for the color cube and 17 for
the gray ramp. For the best rendering results, specify an odd number for the
gray ramp.

Resources that are not specified take these default values:

DPSColorCube.GrayScale.4.grays: 9

DPSColorCube.GrayScale.8.grays: 17

DPSColorCube.PseudoColor.4.reds: 2

DPSColorCube.PseudoColor.4.greens: 2

DPSColorCube.PseudoColor.4.blues: 2

DPSColorCube.PseudoColor.4.grays: 2

DPSColorCube.PseudoColor.8.reds: 4

DPSColorCube.PseudoColor.8.greens: 4

DPSColorCube.PseudoColor.8.blues: 4

DPSColorCube.PseudoColor.8.grays: 9

DPSColorCube.PseudoColor.12.reds: 6

DPSColorCube.PseudoColor.12.greens: 6

DPSColorCube.PseudoColor.12.blues: 5

DPSColorCube.PseudoColor.12.grays: 17

DPSColorCube.DirectColor.12.reds: 6

DPSColorCube.DirectColor.12.greens: 6

DPSColorCube.DirectColor.12.blues: 6

DPSColorCube.DirectColor.12.grays: 6

DPSColorCube.DirectColor.24.reds: 7

DPSColorCube.DirectColor.24.greens: 7

DPSColorCube.DirectColor.24.blues: 7

DPSColorCube.DirectColor.24.grays: 7

If none of the above defaults apply to the display, the Client Library uses no
color cube and a 2-element gray ramp; that is, black and white.

Once theRGB_DEFAULT_MAP andRGB_GRAY_MAP properties have been
defined by any application, all applications using that display will use the
values of these properties, regardless of any customizations you may have
made, until the X server is reset.

66 Display PostScript NX Software Concepts and Facilities 01 June 1993

 Appendix C How to Use the Pass-Through Information

Certain information presented in this manual should be included in your
documentation for end users and in your documentation for system
administrators. These concepts are marked throughout this manual with an
arrow as “Pass-Through Information.”

You must decide which information is appropriate for your end users and
incorporate it into your application’s documentation. The following sections
highlight the information that is the most important. Adobe recommends that
you at least include the information on starting an agent withexecnx and
colormap usage in your documentation.

C.1 Documentation for End Users

 Display PostScript Connection Policy

If your application usesXDPSNX_AGENT and provides a user interface that
lets your user select a host and port to connect to a specific agent, your
documentation must describe the user interface.

If your application usesXDPSNX_AUTO_LAUNCH and an agent has been
started, you should notify your end user that an agent has been started
automatically. (The Client Library handles this by sending a warning
message to the standard output stream by calling
DPSDefaultTextBackstop). If XDPSNX_AUTO_LAUNCH is not specified
and an existing extension or agent cannot be found, you should generate an
error message that tells your user that the Display PostScript system is not
available.

See “Display PostScript Connection Policy” in section 2.3.

Pass-Through
Information

Appendix C How to Use the Pass-Through Information 67

 Starting an Agent with execnx

Adobe recommends that you include information for end users on how to
startexecnx on the command line. Users may useexecnx to do the following.

• Start an agent to service a particular X display.

• Override command-line arguments that are set by the application for
automatically started agents.

• Start an agent if there are any lock-and-key conflicts.

See “Starting an Agent with execnx” in section 5.2.

Environment Variables

If you want end users to be able to set their environment variables to override
the default settings in the application, you should include information that
tells users how to set the variables.

If the user wants to use their own resource files in addition to the shared
resources, you must include documentation that tells users how to modify the
PSRESOURCEPATH environment variable.

Do not include the information onPATH if your application specifies an
explicit path for thedpsnx.agent file.

See “Environment Variables” in section 6.1.

Colormap Usage

Adobe recommends that you include the information in this section in your
end user documentation.

See “Colormap Usage” in appendix B.

C.2 Documentation for System Administrators

Selecting a Port

If a system administrator needs to change the default base port for the TCP/IP
transport, you should provide information on how a port is selected.

See “Selecting a Port” in section 2.4.

68 Display PostScript NX Software Concepts and Facilities 01 June 1993

Data Files

If a system administrator needs to change the location of the VM file, the
debug log file, or add fonts to be shared by users of an application, you
should provide information on how to change the PostScript language
resource files.

See “Data Files” in section 4.1.

 Starting an Agent With execnx

Adobe recommends that you tell system administrators how to start an agent
on the command line withexecnx. System administrators may useexecnx to
do the following.

• Specify where agents are run on a network.

• Override command-line arguments that are set by the application for
automatically started agents.

• Start an agent on a specific port.

• Start multiple agents per display.

• Start multiple agents per host.

See “Starting an Agent With execnx” in section 5.2.

59

Index

Symbols
: 39, 51
:: 32, 39, 40, 51
– – 31, 36
.Xdefaults 2, 54
/etc/services 13
/usr/bin/X11 48
/usr/lib/DPS 50
/usr/lib/X11 50

A
absolute path name25
Adobe Font Metric

files 45
advertisement4, 12, 26
advertising property12, 17, 26
AFM files SeeAdobe Font Metric files

45
agent 3, 7

automatic startup24
configuring 20, 25
connecting to Xlib 7
controlling length of run 22
location of 48
one per application15
one per display16
one per host18
selecting a port13
setting the port of42
starting an 7, 24
where to install 48

agent executable.Seedpsnx.agent
AGENT_ARG_PIXEM 43
AGENT_ARG_SHOWFONTS 38
AGENT_ARG_SMALLFONTS 43
agent_options25
AGENT_PIXMEM_LIMITED 43
AGENT_PIXMEM_MODERATE 43

AGENT_PIXMEM_UNLIMITED 43
AGENT_SMALLFONTS_ACCURATE 43
AGENT_SMALLFONTS_FAST 38, 43
API. Seeapplication programmer interface
application 4, 6

location of 47
where to install 48

application defaults file49
application developer12
application programmer interface (API)5
assigning an agent to a display25
asynchronous output9
authorization.Seelock-and-key
automatic startup13, 24, 41

See alsoautomatic startup13

B
bitmaps 6, 38
blocking 37

See also
XDPSNX_REQUEST_RECONCILE

33
See also

XDPSNX_REQUEST_XSYNC 33
buffer requests33

C
client 4

See alsoapplication
Client Library 6, 41, 54

additional considerations for31
automatic startup of an agent24
concepts 31
configuring 29
defaults 39
environment variables29
limitations of 7
new procedures39

60 Index 01 June 1993

Client Library procedures10, 20
Client Library Reference Manual2
Client Library Supplement for X2
ClientMessage9, 31, 37
clip 10, 31
color

configuring use of 54
resource entries for54

colormap 54, 56
command-line arguments21, 24, 26

configuring an agent with20
passing programmatically24

communication
how it works 5

configuration 5
configuring an agent20, 41, 43
configuring the Client Library29, 41
configuring the system

one agent per application15
one agent per display15, 16
one agent per host15, 18

connecting to an agent12
connection 7, 8
connection policy 12
context.SeeDisplay PostScript context

D
daisy-chain 37
data synchronization7, 9
–debug 21
debug log 20, 21, 22, 58
debugging 12, 20, 29, 31
DEC ULTRIX 50
DECnet 29
DECwindows 50
default base port13
deployment 5
DirectColor 54
DISPLAY 26, 27
–display 26, 27
Display PostScript connection policy

12
Display PostScript context9, 24

output from 9
scheduling 22

Display PostScript Developers Kit
(SDK) 2

Display PostScript extension2
data synchronization7
events 7
information flow 7
replies 7

requests 7
Display PostScript NX software

data synchronization9
design features5
functional components of6
how it works 5
information flow 9
overview of 5
related software2
starting up 52

Display PostScript requests8, 10
constraints on8
reconciling 40
requests that return values37
serialization of 8
synchronization 32

Display PostScript SDK2
Display PostScript Toolkit for X2
Display PostScript widget34
displaying colors 54
distribution 45
documentation

Client Library Reference Manual2
Client Library Supplement for X2
Display PostScript Toolkit for X2
dpsnx.agent(1)46
execnx(1) 46
listnx(1) 46
Programming the Display PostScript

System with X 2
pswrap Reference Manual2
tar(1) 52
xhost(1) 27, 53

dpsclock.c 48
DPSDefaultTextBackstop56
DPSFlushContext10, 11, 37
dpsnx.agent25, 27, 46, 48, 49
dpsnx.debug46
DPSNX.upr 20, 46, 49
dpsnx.vm 21, 45, 49
DPSNX_REQUEST_RECONCILE33
dpsnxAgentExec49, 50
dpsNXargs.h 20, 24, 29, 39, 41, 43
DPSNXDebugLog 20

specifying location of 20
DPSNXFonts.upr 20, 46, 49
DPSNXHOST 12, 29
DPSNXOVER 12, 29

overriding the Display PostScript
extension 29

dpsnxPSResDir49, 50
DPSNXVM 20
DPSWaitContext 11, 34

drawable 6, 10

E
end user.See user
environment variables12, 29, 30
/etc/services 13
event management6
events 8

asynchronous9
ClientMessage9, 31
XSendEvent 9

example programs25, 34, 35, 46
execnx 21, 22, 46

command-line arguments26, 27
starting an agent24, 25
starting an agent for a particular

display 27
executables3

prohibited 46
required 46

F
files 13

.Xdefaults 54
/etc/services 13
AFM files 45
dpsclock.c 48
DPSNX.upr 20
dpsnx.vm 45
dpsnxAgentExec49
dpsNXargs.h 20
DPSNXFonts.upr 20
font files 21
initial VM file 21
install.dpsclock 48
location of 47
PostScript language resource files

20, 49
source.me 47
Type 1 fonts 45

finding an agent. See connection policy
flow of information 5, 7, 8, 10
flushing

Display PostScript requests
before blocking 37
when X events are handled36
when X requests return values

36
explicit 12
implicit 12, 36
side effects of 10

Index 61

X requests 11
font files 20, 45

finding location of 21
font resources20
fonts 20, 43

inaccurate spacing38
required 45
special considerations for38

G
GC (graphic context)6, 8, 39
GC clip 10, 31
GrayScale 54

H
handling race conditions32
handling race conditions explicitly33
host 4, 15, 18, 41, 52
hostname 29

I
implicit flushing.See flushing
information flow 5, 7, 8, 10
initial VM file 21
install.dpsclock 48
installing

an application 47
guidelines 48
PostScript language resource files

49
required components49
utility 48

example of 48
with existing Display PostScript

environment 50
Internet 13
interpreter 5, 7
Intrinsics 11, 12, 36

K
key.Seelock-and-key

L
launching an agent.Seeautomatic

startup
-linger 21
listening port 13
listnx 46
location of files 47

lock-and-key 5, 6, 13, 25, 27, 30
automatic implementation of13

M
manual pages46
manual startup

command-line arguments26
with execnx 25

manualsSeedocumentation 52
mode.Seerequest synchronization

modes

N
network connection.See connection
network protocol 13
–new 26
NIS database13
–nolog 22
Notes 30, 39, 41

O
outline font files 49
output from a context8
output stream9
output, asynchronous9
overriding the Display PostScript

extension 29
overriding wire-to-event procedures37
overview 5

P
pass-through information3,12,20,25,

29, 46, 54, 56
guidelines for using56
required 46

PATH 57
PATH 30
path names3
–port 26
port 5, 13, 24, 27, 29, 41

default listening 13
reserved port27
selecting a base range13

port number 16
PostScript language resource files20,

30, 46
importance of 48
location of 48
required 46

where to install 49
Programming the Display PostScript

System with X 2
prohibited documentation46
prohibited executables46
protocol.Seenetwork protocol
PseudoColor 54
–psres 22, 49
PSRESOURCEPATH57
PSRESOURCEPATH30

locating 30

Q

–quantum 22
quantum number

limits of 23
performance of an agent with23

quickstart 52

R

race conditions32
advanced handling of33
example of proper synchronization

34
range of ports 13
RELEASE 3, 47, 48
release

components of45
request management

management of6
See alsoDisplay PostScript requests

6
request synchronization modes33

handling race conditions implicitly
33

specifying 32
XDPSNX_REQUEST_BUFFER36

requests that return values11, 37
requests.SeeDisplay PostScript

requests
required components45

data files 45
executables46
PostScript Resource files49

reserved port27
resource file

color entries for 54
configuring an agent with20

resources 10
RGB_DEFAULT_MAP 54, 55
RGB_GRAY_MAP 54, 55

62 Index 01 June 1993

S
scheduling contexts23
screen fonts.SeeX screen fonts
SDK 2

how to order 2
search path25, 30
selecting a port13
serialization 4
server 4
services file 13
side effects 10
source.me 47
special considerations for fonts38
–stack 22
starting an agent5, 13, 24

on a different host27
on a specific port27
starting a specific agent27
starting multiple agents27

starting Display PostScript NX software
52

StaticColor 54
StaticGray 54
–sync 22
synchronization 4, 5, 6, 7

effects of 10
example code34, 35
hints for controlling 11
modes 33
of clipping regions 39
Seerace conditions

system administration7

T
TCP/IP 57
TCP/IP 13
timeslice 23
–transport 25, 26, 27
transport 13, 24
TrueColor 54

U
UNIX domain 29
UNIX kernel, modified 22
user 7, 12, 21, 29
/usr/bin/X11 48
/usr/lib/DPS 50
/usr/lib/X11 50

V
vendor-specific name3
VM file 20, 58

W
when to add code8
wire-to-event converter9, 37
wire-to-event override9, 37
workstation 4
wraps that return values11

X
X drawing primitives 6
X events 8
X protocol 5, 7
X requests 8, 9

constraints on8
serialization of 8

X screen fonts 38
X server 4, 7, 9, 15

communicating with 5
handling race conditions on32

X synchronous mode22
XClipRectangles 10, 31
.Xdefaults 2, 54
XDPSNX_AGENT 56
XDPSNX_AGENT 12, 41
XDPSNX_AUTO_LAUNCH 56
XDPSNX_AUTO_LAUNCH 13, 24, 41
XDPSNX_EXEC_ARGS 41
XDPSNX_EXEC_FILE 41, 42
XDPSNX_LAUNCHED_AGENT_PORT

42
XDPSNX_LAUNCHED_AGENT_TRANS

42
XDPSNX_REQUEST_BUFFER33, 42

limiting use of 36
XDPSNX_REQUEST_RECONCILE33,

42
XDPSNX_REQUEST_XSYNC 33, 42
XDPSNX_TRANS_DECNET 42
XDPSNX_TRANS_TCP 42
XDPSNX_TRANS_UNIX 42
XDPSNXSetAgent 20
XDPSNXSetAgentArg 39, 40
XDPSNXSetClientArg 12, 13, 24, 25,

29, 36, 39, 49
XDPSReconcileRequests35, 39, 40
XDPSSyncGCClip 31, 39
XFlush 10

xhost 27
Xlib procedures 10

handling information flow 10
XFlush 11
XSync 11

XNextEvent 11
XPending 11
XSendEvent 9
XSetClipMask 9
XSetRegion 10, 31
XSync 11, 32, 33

